Chứng minh S chia hết cho 6
S=1+2+3+4+5+6+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(3S=3+3^2+3^3+...+3^{10}\\ \Rightarrow3S-S=3+3^2+...+3^{10}-1-3-3^2-...-3^9\\ \Rightarrow2S=3^{10}-1\\ \Rightarrow S=\dfrac{3^{10}-1}{2}\)
Ta có \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^8\right)=4\left(1+3^2+...+3^8\right)⋮4\)
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)
=1.3+2^2.3+2^4.3+2^6.3+2^8.3
=3.(1+2^2+2^4+2^6+2^8) chia hết cho 3
S=1+2+2^2+2^3+2^4+2^5+2^6+2^7
S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)
S=3 + 3.4 + 3.16 + 3.64
S=255
Vì 255 chia hết cho 3
=> S sẽ chia hết cho 3
Người lạ ơi bố thí cho tôi ^_^
Tổng s=24
Vậy S chia hết cho 6
Tổng bằng 24
Vậy S chia hết cho 6