Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

24 tháng 10 2023

ko bt lm

 

17 tháng 11 2015

b1:

B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)

A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)

B2: bạn kéo xuống dưới nãy mk thấy có ng làm r

b3: (2x+1)(y-5)=168

Ta có bảng sau: 

2x+112478121421244284168
2x01367111320234183167
x0  3   10    
y-5168  24   8    
y173  29   13    

(mấy ô mk để trống là loại vì x,y là số tự nhiên)

3 tháng 12 2021

Answer:

\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)

\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)

\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)

\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)

Mà ta có: \(S=16276⋮313\)

Vậy \(S⋮313\)

25 tháng 10 2015

Bài 1 : 

A = 1 + 2 + 22 + ... + 211

A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )

A = 3 + 22(1+2) + ... + 210(1+2)

A = 1.3 + 22.3 + ... + 210.3

A = 3.(1+22+...+210) chia hết cho 3

Bài 2 :

2.52 + 3:710 - 54:33

= 2.25 + 3:1 - 54:27

= 50 + 3 - 2

= 49

Bài 3 :

a) ( 2x - 6 ) . 47 = 49

2x - 6 = 42 = 16

2x = 16

=> x = 8

b) ( 27x + 6 ) : 3 - 11 = 9

( 27x + 6 ) : 3 = 20

27x + 6 = 60

27x = 54

=> x = 2

c) 740 : ( x + 10 ) = 102 - 2.13

740 : ( x + 10 ) = 74

x + 10 = 10

=> x = 0

d) ( 15 - 6x ) . 35 = 36

15 - 6x = 3

6x = 12

=> x = 2

Bài 4 :

Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11 

25 tháng 10 2015

Bài 1 : 

A = 1 + 2 + 22 + ... + 211

A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )

A = 3 + 22(1+2) + ... + 210(1+2)

A = 1.3 + 22.3 + ... + 210.3A = 3.(1+22+...+210) chia hết cho 3

Bài 2 :

2.52 + 3:710 - 54:33

= 2.25 + 3:1 - 54:27

= 50 + 3 - 2= 49

Bài 3 :

a) ( 2x - 6 ) . 47 = 49

2x - 6 = 42 = 16

2x = 16

=> x = 8

b) ( 27x + 6 ) : 3 - 11 = 9

( 27x + 6 ) : 3 = 20

27x + 6 = 60

27x = 54

=> x = 2

c) 740 : ( x + 10 ) = 102 - 2.13

740 : ( x + 10 ) = 74

x + 10 = 10

=> x = 0

d) ( 15 - 6x ) . 35 = 36

15 - 6x = 3

6x = 12

=> x = 2

Bài 4 :

Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11 

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha