Giải và biện luận phương trình
\(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT : \(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\). Điều kiện xác định : \(x\ne0,x\ne a-b\)
\(\Leftrightarrow\frac{ab-bx+ax}{abx}=\frac{1}{x-a+b}\)
\(\Leftrightarrow\left(ab-bx+ax\right)\left(x-a+b\right)=abx\)
\(\Leftrightarrow\left[x\left(a-b\right)+ab\right]\left[x-\left(a-b\right)\right]=abx\)
\(\Leftrightarrow\left[x-\left(a-b\right)\right].x\left(a-b\right)+\left[x-\left(a-b\right)\right].ab=abx\)
\(\Leftrightarrow x^2\left(a-b\right)-x\left(a-b\right)^2+abx-ab\left(a-b\right)=abx\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)x^2-\left(a-b\right)x-ab\right]=0\)
Đến đây bạn tự biện luận nhé :)
ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)
Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
\(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)
Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x
Nếu \(a\ne b\)thì phương trình có nghiệm
\(\frac{2}{b-x}-\frac{1}{c-x}=0\)
\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)
\(\Rightarrow2c-2x-b+x=0\)
\(\Leftrightarrow-x=b-2c\)
\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)
Vậy ..............................................................................................
ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\) (2)
Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\) (3)
TH1 : a = b = 0
Điều kiện 2 luôn đúng , khi có :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)
TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)
TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)
TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)
Khi đó : (3) \(\Leftrightarrow x=0\), là nghiệm duy nhất của phương trình .
TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)
Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)b
KL : ............
Mạn phép sửa đề \(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-\left(a+b\right)}\)ĐKXĐ x khác 0,a+b
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x-\left(a+b\right)}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{x-\left(a+b\right)-x}{x\left(x-a-b\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow-\frac{1}{x\left(x-\left(a+b\right)\right)}=\frac{1}{ab}\Leftrightarrow x\left(x-a-b\right)=-ab\)\(\Leftrightarrow x\left(x-a\right)-b\left(x-a\right)=0\Leftrightarrow\left(x-b\right)\left(x-a\right)=0\)
Để x=a là nghiệm thì \(\left\{{}\begin{matrix}x=a\ne0\\x=a\ne a+b\end{matrix}\right.\)
Để x=b là nghiệm thì \(\left\{{}\begin{matrix}x=b\ne0\\x=b\ne a+b\end{matrix}\right.\)
1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)
OK CHỨ BẠN____CHÚC HOK TỐT
\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b