Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)
Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.
Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)
Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)
Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]
Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)
Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))
b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)
\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)
Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)
Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)
ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)
Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
\(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)
Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x
Nếu \(a\ne b\)thì phương trình có nghiệm
\(\frac{2}{b-x}-\frac{1}{c-x}=0\)
\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)
\(\Rightarrow2c-2x-b+x=0\)
\(\Leftrightarrow-x=b-2c\)
\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)
Vậy ..............................................................................................
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{ax^2-x+ax-1+bx-b}{x^2-1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
\(\Leftrightarrow\frac{ax^2+x\left(a-1+b\right)-b-1}{x^2-1}=\frac{ax^2+a}{x^2-1}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
Giải ra :D
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)
OK CHỨ BẠN____CHÚC HOK TỐT
\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b
ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\) (2)
Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\) (3)
TH1 : a = b = 0
Điều kiện 2 luôn đúng , khi có :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)
TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)
TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)
TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)
Khi đó : (3) \(\Leftrightarrow x=0\), là nghiệm duy nhất của phương trình .
TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)
Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)b
KL : ............