K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

1/ Ta cần c/m \(3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)⋮6\)

Tức là \(3^{n+1}.10+2^{n+2}.3⋮6\) (1)

Ta có: 

Với n = 0 \(3^{n+1}.10+2^{n+2}.3=114⋮6\Rightarrow\)mệnh đề đúng với n = 0 (1)

Giả sử điều đó đúng với n = k.Tức là \(3^{k+1}.10+2^{k+2}.3⋮6\) (2)

Ta sẽ c/m nó đúng với n = k + 1. 

Thật vậy,ta cần c/m: \(3^{k+2}.10+2^{k+3}.3⋮6\)

\(\Leftrightarrow3^k.90+2^k.24⋮6\)

Điều này luôn đúng do \(90⋮6;24⋮6\rightarrow3^k.90⋮6;2^k.24⋮6\)

\(\Rightarrow3^k.90+2^k.24⋮6\) (3)

Từ (1);(2) và (3) ta được đpcm.

17 tháng 2 2019

2.b)Gọi số học sinh của 3 lớp lần lượt là x,y,z > 0

Theo đề bài ra,ta có: \(\frac{2x}{3}=\frac{y}{1}=\frac{4z}{5}\) và \(\left(x+y\right)-z=57\)

Ta có: \(\frac{2x}{3}=\frac{y}{1}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{1}=\frac{z}{\frac{5}{4}}\)

Áp dụng t/c dãy tỉ số "=" nhau,ta có:

\(\frac{x}{\frac{3}{2}}=\frac{y}{1}=\frac{z}{\frac{5}{4}}=\frac{\left(x+y\right)-z}{\left(\frac{3}{2}+1\right)-\frac{5}{4}}=\frac{57}{\frac{5}{4}}=\frac{228}{5}\)

Đến đây bạn tự suy ra,nếu ra số hữu tỉ thì làm tròn nha!

3 tháng 4 2017

nếu 0 khác nhau thì là 5 số 1 phần 2

8 tháng 4 2017

1/2 nha bạn

tích

16 tháng 4 2016

Tích hai số cạnh nhau luôn là \(\frac{1}{4}\)

Coi 4 số cạnh nhau là a, b, c,d

Có \(ab=bc=\frac{1}{4}\)

\(\Rightarrow a=c\)

\(bc=cd=\frac{1}{4}\)

\(\Rightarrow b=d\)

Cứ như vậy, ta có một dãy số có dạng a, b , a , b,... ( Do các số cách nhau 1 số thì bằng nhau)

Và \(ab=\frac{1}{4}\)

Các số đó không xác định vì rất nhiều cặp số có tích là \(\frac{1}{4}\)

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10.Bài 2. tìm x biết:a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành 3 số theo tỉ lệ 2/5 : 3/4 : 1/6. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: Số a chia thành ba số nghĩa là ba số đó cộng...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n\)

chia hết cho 10.

Bài 2. tìm x biết:

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành 3 số theo tỉ lệ 2/5 : 3/4 : 1/6. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: Số a chia thành ba số nghĩa là ba số đó cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. chứng minh rằng:

a) AC=EB và AC song song với EB.

b) Gọi I là điểm trên AC, K là một diểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE=50 độ và góc MEB=25 độ. Tính hóc HEM và góc BME.

 

0
Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0