Tìm số nguyên x và y biết : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Ai làm nhanh và đúng thì mik sẽ tick nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
Ta có :
\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{3}{75}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{9}{225}\)
\(\Leftrightarrow\)\(\left(xyz\right)^2=\left(\frac{3}{15}\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}xyz=\frac{3}{15}\\xyz=\frac{-3}{15}\end{cases}}\)
* Nếu \(xyz=\frac{3}{15}\)
\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\\y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\\z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\end{cases}}\)
Vậy \(x=\frac{-3}{2}\)\(;\)\(y=-2\) và \(z=\frac{9}{5}\)
Chúc bạn học tốt ~
Bạn êi tại olm bị lỗi chỗ \(\hept{\begin{cases}\\\\\end{cases}}\) nên mình trình bày lại nhá bạn
\(x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\)
\(y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\)
\(z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\)
Vậy ...
Chúc bạn học tốt ~
Ta có : \(\frac{x}{-3}=\frac{4}{y}\)\(=x.y=-12\)
Và \(-12=-1.12=\left(-1\right).12=-2.6=\left(-2\right).6=-3.4=\left(-3\right).4\)
Ta có các cặp xy là :
\(\orbr{\begin{cases}x=-1\\y=12\end{cases}}\orbr{\begin{cases}x=\left(-1\right)\\y=12\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\x=6\end{cases}}\orbr{\begin{cases}x=\left(-2\right)\\x=6\end{cases}}\)
\(\orbr{\begin{cases}x=-3\\y=4\end{cases}}\orbr{\begin{cases}x=\left(-3\right)\\y=4\end{cases}}\)
nguyễn nam dương :
mik thấy bạn làm hơi thừa nhưng bạn trả lời nên mik vẫn k cho nha
a/ \(\frac{x}{-3}=\frac{4}{y}\Rightarrow xy=-12\Rightarrow\left(x;y\right)\)
=> (x;y)={(-1;12), (1;-12), (-2;6), (2;-6), (-3;4), (3;-4)}
b/ \(\frac{-x}{4}=\frac{-9}{x}\Rightarrow x^2=36\Rightarrow x=\pm6\)
a) 5y = 72
=> y = 72/5
2x = 3y
<=> 2x = 3 . 72/5
<=> 2x = 216 / 5
<=> x =108/5
3x - 7y + 5z = -30
<=> 3 . 108/5 - 7. 72/5 + 5z = - 30
<=> 324/5 - 504/5 +5z = -30
<=> 5z = 6
<=> x = 6/5
câu a đoạn cuối z = 6/5 nha
b) x : y : z = 5 : 3 :4
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)
=> x =-605/ 7
=> y = -363 / 7
=> z = -484 / 7
\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra :
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)
\(5x+2=4x+6\)
\(5x-4x=6-2\)
\(x=4\)
\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)
\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)
Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)
Thay vào đề , ta có : xyz = 640
\(\Rightarrow4k\cdot8k\cdot20k=640\)
\(\Rightarrow640k^3=640\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=4;y=8;z=20\)
Vậy
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
tu xet bang
tớ có cách khác:))
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{40+2xy}{8x}=\frac{x}{8x}\)
\(\Rightarrow40+2xy=x\)
\(\Rightarrow40=x\left(1-2y\right)\)
Cách này xem cho vui nha.dài hơn cách của Phương Uyên.