Tam giác ABC, một đường thẳng song song với BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF = BD. Gọi M là giao điểm của DF và BC,
a) Chứng minh MD/MF = AC/AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC có DE//BC nên theo định lý Ta-lét: BD/CE = AB/AC
b) Tam giác DEF có MC//DE nên theo định lý Ta-lét: MD/MF = EC/CF = EC/BD = AC/AB
Help me!!!!!!!!!!!!!!!! Mình cần gấp. Ai giúp mik vs!!!!!!!!
Ta có: CM // DE
=> \(\frac{CF}{CE}=\frac{MF}{MD}\) ( định lý Ta-lét) (sorry, mình vẽ thiếu điểm F) (1)
Ta có: DE//BC
=> \(\frac{BD}{AB}=\frac{CE}{CA}\)( định lý Ta-lét)
=>\(\frac{BD}{CE}=\frac{AB}{AC}\)
Mà BD=CE nên \(\frac{CF}{CE}=\frac{AB}{AC}\) (2)
Từ (1) và (2) => \(\frac{MF}{ME}=\frac{AB}{AC}\)
b) Ta có \(\frac{AD}{AB}=\frac{DE}{BC}\)
=> \(\frac{AD}{5+AD}=\frac{3}{8}\)
=> AD=5 (cm)
=> AB=8(cm)
Mà BC=8 (cm) nên AB=BC
=> Tam giác ABC cân tại B
a) Áp dụng định lý Talet vào tam giác ABC có DE//BC
\(\frac{AB}{BD}=\frac{AC}{CE}\Rightarrow\frac{CE}{BD}=\frac{AC}{AB}\)
mà BD=CF (gt) \(\Rightarrow\frac{CE}{CF}=\frac{AC}{AB}\left(1\right)\)
Ta có: DE//BC mà B \(\in\)BC
=> DE//MC
\(\Rightarrow\frac{MD}{MF}=\frac{CE}{CF}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{MD}{MF}=\frac{AC}{AB}\left(đpcm\right)\)
b) BC=8cm, BD=5cm, DE=3cm
Áp dụng định lý Talet vào tam giác ABC có: DE//BC
\(\Rightarrow\frac{DF}{BC}=\frac{AD}{AB}=\frac{AE}{AC}\)
\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=\frac{AB-BD}{AB}\)
\(\Leftrightarrow\frac{AB-5}{AB}=\frac{3}{8}\)
<=> 3AB=8AB-40
<=> 5AB=40
<=> AB=8cm
AB=BC=8cm => Tam giác ABC cân (đpcm)