Cho tam giác ABC nhọn. M là điểm bất kì trên cạnh BC. D đối xứng với M qua AB, E đối xứng với M qua AC. DE cắt AB và AC lần lượt tại I và K.
a) Chứng minh tam giác ADE cân
b) Chứng minh MA là tia phân giác của góc IMK
c) Biết góc BAC bằng 70 độ .Tính các góc của tam giác ADE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác nhọn ABC, M thuộc BC. Gọi D,E lần lượt là điểm đối xứng của M qua AB và AC
A) Chứn minh tam giác ADE cân
b) DE cắt AB và AC thứ tự tại I và K. Chứng minh MA là đường phân giác
c) Cho biết góc BAC = 70 độ Tính góc ADE
giúp dùm em ạ
a) Gọi giao diểm của DM và AB là P, giao điểm của ME và AC là Q.
Xét tam giác ADP và AMP có:
AP chung, APD=APM=90*, DP=PM
=> tam giác ADP=tam giác AMP=>AD=AM
Tương tự, ta chúng minh được tam giác AMQ=tam giác AEQ=>AM=AE
Do AD=AM,AM=AE=> AD=AE=> tam giác ADE cân tại A.
b) Gọi giao điểm của DE và AM là F.
Ta có: AI là phân giác góc DAF=> DA/AF=DI/IF
AK là phan giác góc FAE=> AE/AF=KE/FK
mà AD=AE=>DI/IF=KE/FK=>DI/KE=IF/KF(1)
Tự chứng minh tam giác DIP=MIP=>DI=IM
tam giác KMQ=tam giác KEQ=>KM=KE
Thay điều trên vào (1)=> IM/KM=IF/IK=>AM là phân giác góc IMK.
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)