Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao
=> Tam giác AMD cân tại A
=> AB cũng đồng thời là đường phân giác của tam giác AMD
=> góc MAB = góc BAD
Tương tự ta CM được AC là đường trung tuyến của tam giác AME
=> góc CAM = góc CAE
=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)
b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến
=> IB là đường phân giác của góc DIM
=> IB là đường phân giác ngoài của tam giác IMK
Tương tự ta có : IC là đường phân giác của góc MKE
=> IC là đường phân giác ngoài của tam giác IMK
Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A
=> MA là đường phân giác trong của tam giác IMK
=> MA là đường phân giác của góc IMK
c.Tam giác ADM cân tại A => AD=AM
Tam giác AEM cân tại A => AE=AM
=> AD=AE => tam giác ADE cân tại A
Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )
=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất
=> AM có độ dài nhỏ nhất
=> AM là đường cao của tam giác ABC
=> M là chân đường cao kẻ từ A xuống BC
Cho tam giác nhọn ABC, M thuộc BC. Gọi D,E lần lượt là điểm đối xứng của M qua AB và AC
A) Chứn minh tam giác ADE cân
b) DE cắt AB và AC thứ tự tại I và K. Chứng minh MA là đường phân giác
c) Cho biết góc BAC = 70 độ Tính góc ADE
giúp dùm em ạ
a) Gọi giao diểm của DM và AB là P, giao điểm của ME và AC là Q.
Xét tam giác ADP và AMP có:
AP chung, APD=APM=90*, DP=PM
=> tam giác ADP=tam giác AMP=>AD=AM
Tương tự, ta chúng minh được tam giác AMQ=tam giác AEQ=>AM=AE
Do AD=AM,AM=AE=> AD=AE=> tam giác ADE cân tại A.
b) Gọi giao điểm của DE và AM là F.
Ta có: AI là phân giác góc DAF=> DA/AF=DI/IF
AK là phan giác góc FAE=> AE/AF=KE/FK
mà AD=AE=>DI/IF=KE/FK=>DI/KE=IF/KF(1)
Tự chứng minh tam giác DIP=MIP=>DI=IM
tam giác KMQ=tam giác KEQ=>KM=KE
Thay điều trên vào (1)=> IM/KM=IF/IK=>AM là phân giác góc IMK.
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)https://olm.vn/hoi-dap/question/717292.html
Ở đây nha vô xem đi
NHớ tiick cho tui
#Hok tốt