1 . chứng minh n + 2 và 3n + 5 là hai số nguyên tố cùng nhau.
2 . cho a > b , a,b thuộc số tự nhiên , a + b = 64, UcLN (a,b) = 8
tìm a và b
ai trả lời đúng và nhanh nhất sẽ nhận được tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-5\right)^6=\left(x-5\right)^8\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^8=0\)
\(\Rightarrow\left(x-5\right)^6\left[1-\left(x-5\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^6=0\\1-\left(x-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\\left(x-5\right)^2=\left(\pm1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\x-5=1\\x-5=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
P/s: 2 dòng cuối bạn thay \(\hept{\begin{cases}\\\\\end{cases}}\)thành \(\orbr{\begin{cases}\\\end{cases}}\)nhé
b, Gọi ƯCLN\((a,a\cdot b+4)\)là d. Ta có :
\(a⋮d\Rightarrow a\cdot b⋮d\)
\(a\cdot b+4⋮d\)
\(\Rightarrow a\cdot b+4-a\cdot b⋮d\)
\(\Rightarrow4⋮d\)
\(\Rightarrow d\inƯ(4)\)
Mà a là số lẻ
\(\Rightarrow d\ne\pm2;\pm4\)
\(\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN(a,a\cdot b+4)=1\)
Vậy : ....
3 ) Ta có 1 giờ 5 phút = 75 phút
Xe thứ 2 rời bến lần thứ 2 lúc 56 + 4 = 60 (phút)
Xe thứ 3 rời bến lần thứ 2 lúc 48 +2 = 50 (phút)
=> Ta có BCNN(50,60,75) = 300
Mà 300 phút = 5 giờ
=> Sau 5 giờ 3 xe cùng xuất phát từ bến lần thứ 2 và lúc đó là 6 + 5 = 11 (giờ)
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
1)Gọi ƯC(3n+4,5n+7)=d
=>3n+4 chia hết cho d=>5.(3n+4)=15n+20 chia hết cho d
5n+7 chia hết cho d=>3.(5n+7)=15n+21 chia hết cho d
=>15n+21-15n-20 chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>ƯC(3n+4,5n+7)=1
=>3n+4 và 5n+7 là 2 số nguyên tố cùng nhau
1.
gọi UCLN(n+1;3n+4) là d
ta có :
n+1 chia hết cho d=>3(n+1) chia hết cho d =>3n+3 chia hết cho d
=>3n+4 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1;3n+4 là hai số nguyên tố cùng nhau
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
1)
Gọi d là ƯC(n+2;3n+5) (d thuộc N*)
=>n+2 chia hết cho d =>3n+6 chia hết cho d
=>3n+5 chia hết cho d
=>3n+6-3n-5 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(n+2;3n+5)=1
=>ĐPCM