Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
GỌI \(\left(n+1,3n+4\right)=d \)
=> \(\left(n+1\right)⋮d;\left(3n+4\right)⋮d \)
=>\(3.\left(n+1\right)⋮d;\left(3n+4\right)⋮d \)
=>\(\left(3n+3\right)⋮d;\left(3n+4\right)⋮d \)
=>\(\left(3n+4\right)-\left(3n+3\right)⋮d \)
=>\(\left(3n-3n\right)+\left(4-3\right)⋮d \)
=>\(1⋮d \)
=>\(\left(n+1,3n+4\right)=1\)
=>n+1;3n+4 là hai số nguyên tố cùng nhau .
B2:
CÓ 156:a( dư 12) ; 280:a( dư 10)
=>\(\left(156-12\right)⋮a;\left(280-10\right)⋮a\)
=>\(144⋮a;270⋮a\)
=> \(a\inƯC\left(144,270\right)\)
\(144=2^4.3^2;270=2.3^3.5\)
=> (144,270)=18
=>\(a\inƯ\left(18\right)\)
=>\(a\in\left\{1;2;3;6;9;18\right\}\)
Bài 1:
Gọi UCLN của n+1 và 3n+4 là d.
Suy ra:n+1 chia hết cho d
3n+4 chia hết cho d
Suy ra:3n+3 chia hết cho d
3n+4 chia hết cho d
Suy ra:(3n+4)-(3n+3) chia het cho d
Suy ra: 1 chia hết cho d
Vậy d=1.
VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>
1.vì ƯCLN 2 số là 28 nên đặt a=28k, b=28p, k,p là số tự nhiênta có 28(k+p)=224=>k+q=8vậy các cặp (a, b) thỏa mãn là (28,196), (56, 168), (84,140), (112, 112)và các hoán vị của nó.
2.Dựa vào dữ kiện đề bài,ta có:
a=18k;b=18p.(k,p nguyên tố cùng nhau)
Tích:a.b=18k.18p
=324.k.p=1944
=>k.p=6.
=>k bằng 3;p=2.
Vậy a=54;p=36.
3.ĐK a > 12 ( số chia phải lớn hơn dư )
156 chia a dư 12 => 156 - 12 chia hết cho a => 144 chia hết cho a (1)
280 chia a dư 10 => 280 - 10 chia hết cho a => 270 chia hết cho a (2)
Từ (1) và (2) => 144 ; 270 chia hết cho a
=> a thuộc UC (144;270)
UCLN ( 144 ; 270 ) = 18
=> a thuộc ( 18 ; 9 ; 6 ; 3 ; 1 )
a > 12 => a= 18
_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
A) a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2
a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3
a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5
a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7
Suy ra a+11 cùng chia hết cho 2; 3; 5; 7
a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất
Do đó, a+11=BCNN (2;3;5;7)
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau
Do vậy, a+11=2.3.5.7=210
Vậy a=199
B)Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
1.
gọi UCLN(n+1;3n+4) là d
ta có :
n+1 chia hết cho d=>3(n+1) chia hết cho d =>3n+3 chia hết cho d
=>3n+4 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1;3n+4 là hai số nguyên tố cùng nhau