Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với q,p là số nguyên tố lớn hơn 5 chứng minh rằng: p4-q4 ⋮ 24
Vì p là số nguyên tố và lớn hơn 5 nên p lẻ
Khi đó :
\(p^4-q^4=\left(p^2-q^2\right)\left(p^2+q^2\right)=\left(p-q\right)\left(p+q\right)\left(p^2+q^2\right)\)
Dễ thấy, \(p-q;p+q;p^2+q^2\) chia hết cho 2 và có một số chia hết cho 4.
Nên \(p^4-q^4⋮16\left(1\right)\)
Lại có \(p^4-q^4\)
\(=\left(p^4-1\right)-\left(q^4-1\right)\\ =\left(p-1\right)\left(p+1\right)\left(p^2+1\right)-\left(q-1\right)\left(q+1\right)\left(q^2+1\right)\)
Vì p nguyên tố và lớn hơn 5 nên \(p⋮̸3\)
Mà \(\left(p-1\right)p\left(p+1\right)⋮3\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\)
Lại có : \(\left(p-1\right)\left(p+1\right)\left(p^2+1\right)=\left(p-1\right)\left(p+1\right)\left(p^2-4+5\right)\)
\(=\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)+5\left(p-1\right)\left(p+1\right)⋮5\)
Nên \(p^4-1⋮15\)
Tương tự \(q^4-1⋮15\)
Nên \(p^4-q^4⋮15\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow p^4-q^4⋮240\)
Vì p là số nguyên tố và lớn hơn 5 nên p lẻ
Khi đó :
\(p^4-q^4=\left(p^2-q^2\right)\left(p^2+q^2\right)=\left(p-q\right)\left(p+q\right)\left(p^2+q^2\right)\)
Dễ thấy, \(p-q;p+q;p^2+q^2\) chia hết cho 2 và có một số chia hết cho 4.
Nên \(p^4-q^4⋮16\left(1\right)\)
Lại có \(p^4-q^4\)
\(=\left(p^4-1\right)-\left(q^4-1\right)\\ =\left(p-1\right)\left(p+1\right)\left(p^2+1\right)-\left(q-1\right)\left(q+1\right)\left(q^2+1\right)\)
Vì p nguyên tố và lớn hơn 5 nên \(p⋮̸3\)
Mà \(\left(p-1\right)p\left(p+1\right)⋮3\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\)
Lại có : \(\left(p-1\right)\left(p+1\right)\left(p^2+1\right)=\left(p-1\right)\left(p+1\right)\left(p^2-4+5\right)\)
\(=\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)+5\left(p-1\right)\left(p+1\right)⋮5\)
Nên \(p^4-1⋮15\)
Tương tự \(q^4-1⋮15\)
Nên \(p^4-q^4⋮15\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow p^4-q^4⋮240\)