K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có lời giải ko bạn

15 tháng 1 2019

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

3 tháng 11 2023

không bt nữa

Lồn cặc

 

13 tháng 9 2023

Để tìm dư của phép chia 2^2017 cho biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014, chúng ta có thể sử dụng định lý Fermat nhỏ.

Theo định lý Fermat nhỏ, nếu p là một số nguyên tố và a là một số tự nhiên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).

Trong trường hợp này, chúng ta có p = 2 và a = 2.

Ta biết rằng 2 không chia hết cho 2, vì vậy 2^(2-1) ≡ 1 (mod 2), nghĩa là 2^1 ≡ 1 (mod 2).

Do đó, ta có thể thấy rằng tất cả các mũ 2^k với k >= 1 đều có dư 1 khi chia cho 2.

Vì vậy, biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014 có tổng là 2014 và có dư 0 khi chia cho 2.

Do đó, dư của phép chia 2^2017 cho biểu thức này cũng là 0.

7 tháng 10 2018

AI NHANH MÌNH K , ĐANG CẦN GẤP

7 tháng 10 2018

a)xét 2A =2+2^2+2^3+.....+2^2019

-A=1+2+2^2+...+2^2018

A=(2^2019)-1 <2^2019

b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)

2019=x+1 =>x=2018

22 tháng 12 2021

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

học tốt nhé bạn

22 tháng 12 2021

mik cũng vậy

22 tháng 12 2023

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

22 tháng 12 2023

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

22 tháng 3 2020

\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

22 tháng 3 2020

\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)

\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)

\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)

\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2023

Lời giải:

$A=1+3+3^2+3^3+....+3^{2026}$

$=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+....+(3^{2023}+3^{2024}+3^{2025}+3^{2026})$

$=13+3^2(3+3^2+3^3+3^4)+3^6(3+3^2+3^3+3^4)+...+3^{2022}(3+3^2+3^3+3^4)$

$=13+(3^2+3^6+...+3^{2022})(3+3^2+3^3+3^4)$

$=13+(3^2+3^6+...+3^{2022}).120$

$\Rightarrow A$ chia $120$ dư $13$