cho a/2012 =b/2013 =c/2014
cmr: 4(a-b)(b-c)=(a-c0^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\dfrac{a}{2012}=\dfrac{b}{2013}=\dfrac{c}{2014}=k\)
\(\rightarrow a=2012k,b=2013k,c=2014k\)
Vế trái: \(4.\left(2012k-2013k\right)\left(2013k-2014k\right)=4.\left(-1k\right).\left(-1k\right)=4k^2\)
Vế phải: \(\left(2014k-2012k\right)^2=\left(2k\right)^2=4k^2\)
\(\rightarrow\) Vế trái = vế phải = \(4k^2\)
\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)
\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)
Lại có:
\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)
\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)
Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)
Cộng vế với vế:
\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)
\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)
\(A_{min}=1\) khi \(a=b=c=1\)
a )
A = (-2.a+3.b-4.c)-(-2.a-3.b- 4.c)
A = -2a + 3b - 4c + 2a +3b + 4c
A = (-2a+2a)+(3b+3b) +(-4c+4c)
A = 6b
b) bn tự thay vào tính thui
\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)
hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)
A = 4( a - b )( b - c ) - ( c - a )2
= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2
= 4.( -k ).( -k ) - ( 2k )2
= 4k2 - 4k2 = 0
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}2012a=2013b=2014c=2012−2013a−b=2013−2014b−c=2014−2012c−a
\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}⇒−1a−b=−1b−c=2c−a
\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2⇒(−1a−b)(−1b−c)=(2c−a)2
hay \left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}(a−b)(b−c)=4(c−a)2
\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2⇒4(a−b)(b−c)=(c−a)2
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}
\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}
\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2
hay \left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}
\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2