Chứng minh rằng C= \(0,7.\left(83^{83}-37^{37}\right)\) là 1 số nguyên
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
- Theo bài ra, ta có: \(C=0,7.\left(83^{83}-37^{37}\right)\)
\(\Rightarrow C=\frac{7}{10}.\left(83^{83}-37^{37}\right)\)
\(\Rightarrow C=\frac{7\left(83^{83}-37^{37}\right)}{10}\)
- Ta có: \(+)83^{83}=83^{80}.83^3=\left(83^4\right)^{20}.83^3=(\overline{...1})^{20}.\overline{...7}=\overline{...1}.\overline{...7}=\overline{...7}\)
\(+)37^{37}=37^{36}.37=\left(37^4\right)^9.37=\left(\overline{...1}\right)^9.37=\overline{...1}.37=\overline{...7}\)
Suy ra \(83^{83}-37^{37}=\overline{...7}-\overline{...7}=\overline{...0}⋮10\)
\(\Rightarrow7\left(83^{83}-37^{37}\right)⋮10\)
\(\Rightarrow\frac{7\left(83^{83}-37^{37}\right)}{10}\in Z\)
hay \(C\in Z\)
Vậy \(C=0,7.\left(83^{83}-37^{37}\right)\) là 1 số nguyên.
Ta có:C=\(0,7.\left(83^{83}-37^{37}\right)=\frac{7}{10}.\left(83^{83}-37^{37}\right)\)
\(=\frac{7.\left(83^{83}-37^{37}\right)}{10}\)
Đặt \(M=83^{83}-37^{37}\)
Ta lại có:\(83^{83}=83^{80}.83^3=\left(83^4\right)^{20}.\left(...7\right)=\left(...1\right)^{20}.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\)
\(37^{37}=37^{36}.37=\left(37^4\right)^9.37=\left(...1\right)^9.37=\left(...1\right).37=\left(...7\right)\)
Thay vào M,ta được:\(M=\left(...7\right)-\left(...7\right)=\left(...0\right)⋮10\)
\(\Rightarrow7.\left(83^{83}-37^{37}\right)⋮10\)
\(\Rightarrow\frac{7.\left(83^{83}-37^{37}\right)}{10}⋮10\)
\(\Rightarrow C⋮10\)
\(\Rightarrow C=0,7.\left(83^{83}-37^{37}\right)\) là 1 số nguyên.