Tìm số tự nhiên n để
3n + 5 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
\(a,\Rightarrow n+1+4⋮n+1\\ \Rightarrow n+1\inƯ\left(4\right)=\left\{4\right\}\left(n+1>1+1=2\right)\\ \Rightarrow n=3\\ b,\Rightarrow2\left(n-1\right)+3⋮n-1\\ \Rightarrow n-1\inƯ\left(3\right)=\left\{1;3\right\}\\ \Rightarrow n\in\left\{2;4\right\}\)
Câu 1 :
\(\frac{5}{x+1}\)\(=1\)
\(5:\left(x+1\right)=1\)
\(x+1=5:1\)
\(x+1=5\)
\(\Rightarrow x=4\)
a. Ta có: n + 3 ... n - 1
=> n - 1 + 4 ... n - 1
Vì n - 1... n - 1 => 4 ... n - 1 => n - 1 là ước của 4 => n - 1 thuộc (1; 2; 4) =>n thuộc (2; 3; 5)
b. Ta có: 3n - 5 ... n - 1
=>3n - 3 - 2 ... n - 1
=>3(n - 1) - 2 ... n - 1
Vì n - 1 ... n - 1 => 3(n - 1) ... n - 1 => 2 ... n - 1 => n - 1 là ước của 2 => n - 1 thuộc (1; 2) => n thuộc (2; 3)
*dấu"..." là nghĩa là chia hết cho
a) 5 chia hết cho n - 1 khi n - 1 là ước của 5
Ư(5) = {-5; -1; 1; 5}
⇒n - 1 ∈ {-5; -1; 1; 5}
Do n là số tự nhiên nên
n ∈ {0; 2; 6}
b) Do n là số tự nhiên nên 2n + 1 > 0
20 chia hết cho 2n + 1
⇒2n + 1 ∈ Ư(20) = {1; 2; 4; 5; 10; 20}
⇒2n ∈ {0; 3; 5; 6; 11; 21}
Lại do n là số tự nhiên
⇒n ∈ {0; 3}
3n + 5 ⋮ n + 1 <=> 3(n + 1) + 2 ⋮ n + 1
=> 2 ⋮ n + 1 (vì 3(n + 1) ⋮ n + 1)
=> n + 1 ∈ Ư(2) = {1; 2}
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Vậy n ∈ {0; 1}
\(3n+5⋮n+1\)\(\Leftrightarrow3n+3+2⋮n+1\)
\(\Leftrightarrow3.\left(n+1\right)+2⋮n+1\)\(\Leftrightarrow2⋮n+1\left(n+1\inℤ\right)\)
\(\Leftrightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(n\inℕ\Rightarrow n+1=1;2\)\(\Rightarrow n=0;1\)
Vậy \(n=0;1\)