K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho

Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)

Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1

Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)

26 tháng 9 2021

Mình cảm ơn bạn ạ.

Tại vì thật ra mình cũng biết là cái tử nó phải bằng 0 rồi, nhưng cho bằng 0 xong mình không biết tính \(a^2+b^2\) thế nào.

Mong bạn giúp đỡ ạ !

NV
22 tháng 1

\(a+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=0\) có nghiệm \(x=1\)

\(\Rightarrow a+\dfrac{2}{\sqrt{1}}-\dfrac{6}{\sqrt{1}}=0\Rightarrow a=4\)

\(4+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=3\left(2-\dfrac{x+1}{\sqrt{x}}\right)+\left(\dfrac{x+1}{\sqrt{x^2-x+1}}-2\right)\)

\(=-3\left(\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x+1+2\sqrt{x}\right)}\right)+\dfrac{-3\left(x-1\right)^2}{\sqrt{x^2-x+1}\left(x+1-2\sqrt{x^2-x+1}\right)}\)

Rút gọn với \(\left(x-1\right)^2\) bên ngoài rồi thay dố là được

- Từ điều kiện đề bài ta có: \(ax^2+bx+2\ne\pm\left(x^2-1\right)\)

Ở bài này, ta xét 2 trường hợp lớn:

1) Với \(a=0\). Ta xét 2 trường hợp nhỏ:

+ 1a) \(b\ne-2\):

Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=\lim\limits_{x\rightarrow1}bx+2=b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).

+ 1b) \(b=-2\). Ta có:

\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{-2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-2}{x+1}=\dfrac{-2}{1+1}=-1\left(loại\right)\)

2) \(a\ne0\)

- Ta xét 3 trường hợp:

+2a) \(a+b+2=0\Rightarrow b=-2-a\). Khi đó tử thức \(ax^2+bx+2\) có nghiệm là 1 và có thể viết lại thành \(ax^2+bx+2=ax^2-\left(a+2\right)x+2=a\left(x-1\right)\left(x-x_0\right)\left(1\right)\) (x0 là nghiệm còn lại của đa thức).

\(\left(1\right)\Rightarrow ax^2-\left(a+2\right)x+2=ax^2-a\left(1+x_0\right)x+ax_0\)

\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1+x_0\right)\\2=ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{2}{a}\)

Vậy \(ax^2+bx+2=a\left(x-1\right)\left(x-\dfrac{2}{a}\right)=\left(x-1\right)\left(ax-2\right)\), với \(b=-a-2\)

\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax-2}{x+1}=\dfrac{a-2}{2}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\) \(\Rightarrow P=a.b=3.\left(-5\right)=-15\)

+2b) \(a-b+2=0\Rightarrow b=a+2\). Khi đó tử thức \(ax^2+bx+2\) có một nghiệm là -1 và có thể được viết lại thành: \(ax^2+bx+2=a\left(x+1\right)\left(x-x_0\right)\left(2\right)\) (x0 là nghiệm còn lại của tử thức).

\(\left(2\right)\Rightarrow ax^2+\left(a+2\right)x+2=a\left(x+1\right)\left(x-x_0\right)\)

\(\Rightarrow ax^2+\left(a+2\right)x+2=ax^2+a\left(1-x_0\right)-ax_0\)

\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1-x_0\right)\\2=-ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{-2}{a}\)

Vậy \(ax^2+bx+2=\left(x+1\right)\left(ax+2\right)\)

\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}\)

 Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax+2=a+2\ne0\\\lim\limits_{x\rightarrow1}x-1=0\end{matrix}\right.\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}=\infty\) (loại)

+2c) Tử thức \(ax^2+bx+2\) không có nghiệm là 1 và -1. Làm tương tự như trường hợp 2b) (từ khúc tính lim).

Vậy \(P=-15\)

 

 

Bỏ trường hợp 2c, sửa 2b:

-Tử thức \(ax^2+bx+2\) không có nghiệm là 1.

Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=a+b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).

NV
27 tháng 1 2021

\(a=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2-2x-2\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{x^2-2x-2}{x-3}=\dfrac{3}{2}\)

Câu b bạn coi lại đề, là \(x\rightarrow-1^-\) hay \(x\rightarrow1^-\) (đúng như đề thì ko phải dạng vô định, cứ thay số rồi bấm máy)

\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}\)

 \(=\lim\limits_{x\rightarrow3}\dfrac{1}{\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}=\dfrac{1}{2.\left(4+4+4\right)}=...\)

27 tháng 1 2021

a/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{x-3}=....\)

Từ 2 câu kia lát tui làm, ăn cơm đã :D

NV
18 tháng 3 2021

1.

\(\overrightarrow{MN}=\overrightarrow{MB'}+\overrightarrow{B'B}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{AC'}=\overrightarrow{AB'}+\overrightarrow{B'C'}=\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\)

\(\overrightarrow{MN}.\overrightarrow{AC'}=\left(\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\right)\)

\(=\dfrac{1}{2}AB^2-AA'^2+\dfrac{1}{2}AD^2=0\)

\(\Rightarrow MN\perp AC'\)

b.

\(\left\{{}\begin{matrix}AA'\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(ACC'A'\right)\Rightarrow BD\perp AC'\)

Tương tự: \(A'B\perp\left(ADC'B'\right)\Rightarrow A'B\perp AC'\)

\(\Rightarrow AC'\perp\left(A'BD\right)\)

NV
18 tháng 3 2021

2.

Phương trình \(x^3-3x+2=0\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\) có nghiệm kép \(x=1\)

Nên giới hạn đã cho hữu hạn khi và chỉ khi phương trình: \(2\sqrt{1+ax^2}-bx-1=0\) có ít nhất 2 nghiệm \(x=1\) (tức là nghiệm bội 2 trở lên)

Thay \(x=1\) vào:

\(\Rightarrow2\sqrt{1+a}-b-1=0\Rightarrow2\sqrt{1+a}=b+1\)

\(\Rightarrow4\left(a+1\right)=b^2+2b+1\Rightarrow4a=b^2+2b-3\)

Khi đó:

\(\sqrt{4+4ax^2}-bx-1=0\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}-bx-1=0\)

\(\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}=bx+1\)

\(\Rightarrow4+\left(b^2+2b-3\right)x^2=b^2x^2+2bx+1\)

\(\Rightarrow\left(2b-3\right)x^2-2bx+3=0\)

\(\Rightarrow2bx^2-2bx-3x^2+3=0\)

\(\Rightarrow2bx\left(x-1\right)-\left(x-1\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2bx-3x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\\left(2b-3\right)x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2b-3}\end{matrix}\right.\) \(\Rightarrow\dfrac{3}{2b-3}=1\Rightarrow b=3\Rightarrow a=3\)

\(c=\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+3x^2}-3x-1}{x^3-3x+2}=\dfrac{1}{8}\)

26 tháng 12 2023

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\rightarrow\lim\limits_{x\rightarrow1}\left(f\left(x\right)-2x+1\right)=0\\ \rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=1\)

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}=\dfrac{\sqrt{3.1+1}-1-1}{\sqrt{4.1+5}-3.1-2}=0\)

9 tháng 2 2021

1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)

2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)

3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)

4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v