K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2022

Giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) có nghiệm \(x=1\)

\(\Rightarrow2+a+b=0\Rightarrow b=-a-2\)

Ta được: \(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(x+1\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+1}\)

\(=\dfrac{4+a}{2}=\dfrac{1}{4}\)

\(\Rightarrow a=-\dfrac{7}{2}\Rightarrow b=\dfrac{3}{2}\)

NV
8 tháng 3 2022

\(x^2+2x-3=0\) có nghiệm \(x=1\) nên giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) cũng có nghiệm \(x=1\)

\(\Rightarrow2.1^2+a.1+b=0\Rightarrow a+b+2=0\Rightarrow b=-a-2\)

Thay vào:

\(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2+2x-3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+3}=\dfrac{4+a}{4}=\dfrac{3}{4}\)

\(\Rightarrow4+a=3\Rightarrow a=-1\Rightarrow b=-a-2=-1\)

23 tháng 2 2022

Tham khảo:

 

Vì hàm số có giới hạn hữu hạn tại x=1 nên biểu thức tử nhận x=1 làm nghiệm, hay 1+a+b=0.

Áp dụng vào giả thiết, được

\(^{lim}_{x\rightarrow1}\dfrac{x^2+ax-1-a}{x^2-1}=-\dfrac{1}{2}\Leftrightarrow^{lim}_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1+a\right)}{\left(x-1\right)\left(x+1\right)}=-\dfrac{1}{2}\)

\(\Leftrightarrow^{lim}_{x\rightarrow1}\dfrac{x+1+a}{x+1}=-\dfrac{1}{2}\Leftrightarrow\dfrac{2+a}{2}=-\dfrac{1}{2}\Leftrightarrow a=-3\)

\(\Rightarrow b=2\)

 

AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:
Vì $x^2-1\to 0$ khi $x\to 1$ nên để giới hạn đã cho hữu hạn thì $x^2+ax+b$ nhận $x=1$ là nghiệm 

$\Leftrightarrow 1+a+b=0$

$\Leftrightarrow b=-a-1$

Khi đó:
\(\lim\limits_{x\to 1}\frac{x^2+ax+b}{x^2-1}=\lim\limits_{x\to 1}\frac{x^2+ax-a-1}{x^2-1}=\lim\limits_{x\to 1}\frac{(x-1)(x+1+a)}{(x-1)(x+1)}=\lim\limits_{x\to 1}\frac{x+a+1}{x+1}\)

\(=\frac{a+2}{2}=\frac{-1}{2}\Rightarrow a+2=-1\Rightarrow a=-3\)

$b=-a-1=3-1=2$

NV
22 tháng 3 2022

Giới hạn đã cho hữu hạn khi và chỉ khi \(b=1\)

Khi đó: 

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-ax+1}{\sqrt{x^2-ax+1}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-a+\dfrac{1}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{1}{x^2}}+1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=2\Rightarrow a=-4\)

Vậy \(\left(a;b\right)=\left(-4;1\right)\)

24 tháng 1 2021

a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)

\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)

b/ Xet day :\(S=x+x^2+....+x^{2021}\)

Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)

 

 

 

24 tháng 1 2021

Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi

Xet day: \(S=x+x^2+...+x^{2021}\)

\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)

L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)

Is that true :v?

 

9 tháng 2 2021

1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)

2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)

3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)

4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v

Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho

Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)

Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1

Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)

26 tháng 9 2021

Mình cảm ơn bạn ạ.

Tại vì thật ra mình cũng biết là cái tử nó phải bằng 0 rồi, nhưng cho bằng 0 xong mình không biết tính \(a^2+b^2\) thế nào.

Mong bạn giúp đỡ ạ !