1.
\(\text{a)}\) \(\text{Chứng minh rằng: Với mọi x € Q thì giá trị của đa thức:}\)
\(\text{M = (x + 2)(x + 4)(x + 6)(x + 8) + 16 là bình phương của một số hữu tỉ.}\)
\(\text{b) Giải phương trình }\)\(\left|x+1\right|=\left|x\left(x+1\right)\right|\)
\(\text{a, Ta có :}\) \(M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\text{Đặt }a=x^2+10x+16\)
\(\text{Ta có: }M=a\left(a+8\right)+16=a^2+8a+16=\left(a+4\right)^2\)
\(M=\left(x^2+10x+20\right)^2\)
\(\text{b, }\)\(\left|x+1\right|=\left|x\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x\left(x+1\right)\right|-\left|x+1\right|=0\)
\(\Leftrightarrow\left|x\right|.\left|x+1\right|-\left|x+1\right|=0\)
\(\Rightarrow\left|x+1\right|\left(\left|x\right|-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\\left|x\right|-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)