Tìm x thuộc z biết: 2018+|2018-x|=x và x bé hơn hoặc bằng 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:x> hoặc = 2018
=>2018+2018-x=x
=>2x=2018*2
=>x=2018
\(2018+\left|2018-x\right|=x\)\(\Leftrightarrow\)\(\left|2018-x\right|=x-2018\)
+) Với \(\hept{\begin{cases}2018-x\ge0\\x\le2020\end{cases}\Leftrightarrow x\le2018}\) ta có :
\(2018-x=x-2018\)\(\Leftrightarrow\)\(x=2018\) ( nhận )
+) Với \(\hept{\begin{cases}2018-x< 0\\x\le2020\end{cases}\Leftrightarrow2018< x\le2020}\) ta có :
\(-\left(2018-x\right)=x-2018\)\(\Leftrightarrow\)\(x=x\) ( đúng với mọi \(2018< x\le2020\) )
Từ 2 trường hợp trên ta suy ra \(2018\le x\le2020\)
Mà \(x\inℤ\) nên \(x\in\left\{2018;2019;2020\right\}\)
Vậy \(x\in\left\{2018;2019;2020\right\}\)
tham khảo nhé :> nhớ cảm ơn nhẹ cái cho có động lực cứu nhân độ thế :v
Ta có:|2018-x|=2018-x<=>\(2018-x\ge0\Leftrightarrow2018\ge x\)
\(\left|2018-x\right|=x-2018\Leftrightarrow x-2018< 0\Leftrightarrow x< 2018\)
Với \(x\le2018\),thì:
\(2018+\left|2018-x\right|=x\)
\(\Rightarrow2018+2018-x=x\)
\(\Rightarrow x=2018\)
Với:\(\left|2018-x\right|=x-2018\)
\(\Rightarrow2018+\left|2018-x\right|=x\)
....
Ta có:
\(-2017\le x\le2018\)
\(\Rightarrow x\in\left\{-2017;-2016;...;2018\right\}\)
Tổng : (-2017+2017)+(-2016+2016)+...+0+2018=2018
Vậy...
a) x={-2017;-2016;-2015;-2014;-2013;......;2015;2016;2017;2018}
xin lỗi bạn Thái Yrần Thảo Vy nha do mình quên ghi đề
Tham khảo
Cho x+y= 2. CMR : x^2017 + y^2017 bé hơn hoặc bằng x^2018+ y^2018
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1