Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+2017}-y^3=\sqrt{y+2017}-x^3\)
\(\Leftrightarrow\left(\sqrt{x+2017}-\sqrt{y+2017}\right)+\left(x^3-y^3\right)=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow P=x^2-3x^2+12x-x^2+2018\)
\(=-3x^2+12x+2018=2030-3\left(x-2\right)^2\le2030\)
a. ĐKXĐ: \(x\ge-1\)
\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)
\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)
\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)
b.
\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)
c.
\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)
Lời giải:
Vì \(x,y,z\leq 1\Rightarrow (x-1)(y-1)(z-1)\leq 0\)
\(\Leftrightarrow (xy-x-y+1)(z-1)\leq 0\)
\(\Leftrightarrow x+y+z-xy-yz-xz+xyz-1\leq 0\)
\(\Leftrightarrow x+y+z-xy-yz-xz\leq 1-xyz\leq 1(*)\) (do \(xyz\geq 0\) )
Mặt khác:
\(y,z\in [0;1]\Rightarrow y^{2017}\leq y; z^{2018}\leq z\)
Do đó:
\(T=x+y^{2017}+z^{2018}-xy-yz-xz\leq x+y+z-xy-yz-xz(**)\)
Từ \((*);(**)\Rightarrow T\leq 1\) hay \(T_{\max}=1\)
Dấu bằng xảy ra khi \((x,y,z)=(1,1,0);(0,0,1)\) hoặc hoán vị các bộ số ấy
\(2^{x+1}.2^{2017}=2^{2018}\)
\(\Leftrightarrow2^{x+1+2017}=2^{2018}\)
\(\Leftrightarrow2^{x+2018}=2^{2018}\)
\(\Leftrightarrow x+2018=2018\)
\(\Leftrightarrow x=0\)
Vậy .......
giải bài này theo cách này đc k ạ
\n\n\\(\\sqrt{a}\\le\\sqrt{b}\\Leftrightarrow\\left\\{{}\\begin{matrix}a\\ge0\\\\a< b\\end{matrix}\\right.\\)
\n\\(\\sqrt{a}\\le\\sqrt{b}\\Leftrightarrow\\left\\{{}\\begin{matrix}a\\ge0\\\\a\\le b\\end{matrix}\\right.\\)
\n\ne ghi lộn
\nLời giải:
Áp dụng BĐT AM-GM ta có:
$x+\frac{4}{x}\geq 4$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{8}{x}+\frac{32}{y}\geq \frac{(\sqrt{8}+\sqrt{32})^2}{x+y}=\frac{72}{x+y}\geq \frac{72}{6}=12$
Cộng theo vế 2 BĐT trên thì:
$P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(x,y)=(2,4)$
Tham khảo
Cho x+y= 2. CMR : x^2017 + y^2017 bé hơn hoặc bằng x^2018+ y^2018
Đáp án đây bạn https://hoidap247.com/cau-hoi/196616