(1√a−1−1√a):(√a+1√a−2−√a+1√a−1)(1a−1−1a):(a+1a−2−a+1a−1)
(11−√x−11+√x)(1√x+1)(11−x−11+x)(1x+1)
giúp với ạ. Mai thi r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b x 5=10+a,b
a,b x (5-1)=10
a,b=10/4
a,b= 2,5
nếu dưới lớp 6 thì học lại cách xưng hô đi
bạn viết rõ đề ra nhé
b, \(\left|4x-8\right|=1-x\)ĐK : \(x\le1\)
TH1 : \(4x-8=1-x\Leftrightarrow5x=9\Leftrightarrow x=\dfrac{9}{5}\)( ktm )
TH2 : \(4x-8=x-1\Leftrightarrow3x=7\Leftrightarrow x=\dfrac{7}{3}\)( ktm )
b) Ta có: \(\left|4x-8\right|=1-x\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-8=1-x\left(x\ge2\right)\\4x-8=x-1\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x+x=1+8\\4x-x=-1+8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=9\\3x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{5}\left(loại\right)\\x=\dfrac{7}{3}\left(loại\right)\end{matrix}\right.\)
Chọn C
TXĐ: .
Ta có : .
.
Hàm số liên tục tại điểm khi và chỉ khi .
\(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+...+\dfrac{1}{a\times\left(a+4\right)}=\dfrac{50}{609}\)
\(\dfrac{1}{4}\times\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+...+\dfrac{4}{a\times\left(a+4\right)}\right)=\dfrac{50}{609}\)
\(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{a}-\dfrac{1}{a\times4}=\dfrac{50}{609}\div\dfrac{1}{4}\)
\(\dfrac{1}{3}-\dfrac{1}{a\times4}=\dfrac{200}{609}\)
\(\dfrac{1}{a\times4}=\dfrac{1}{3}-\dfrac{200}{609}\)
\(\dfrac{1}{a\times4}=\dfrac{1}{203}\)
\(a\times4=203\)
\(a=\dfrac{203}{4}\)
\(\dfrac{1}{3\times7}\)+\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\)
4\(\times\)( \(\dfrac{1}{3\times7}\) +\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\)) = \(\dfrac{50}{609}\) \(\times\)4
\(\dfrac{4}{3\times7}\)+ \(\dfrac{4}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{4}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\) \(\times\) 4
\(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\)-\(\dfrac{1}{15}\)+...+\(\dfrac{1}{a}\)-\(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)
\(\dfrac{1}{a+4}\) = \(\dfrac{1}{3}\) - \(\dfrac{200}{609}\)
\(\dfrac{1}{a+4}\) = \(\dfrac{1}{203}\)
a + 4 = 203
\(a\) = 203 - 4
\(a\) = 199
Đáp số: \(a\) = 199
\(a,A=\dfrac{x^2-x-2}{x^2-1}+\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(\Rightarrow A=\dfrac{x^2-x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-x-2x+x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-2x-x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x-2}{x+1}\)
\(b,A=\dfrac{3}{4}\\ \Rightarrow\dfrac{x-2}{x+1}=\dfrac{3}{4}\\ \Rightarrow4\left(x-2\right)=3\left(x+1\right)\\ \Rightarrow4x-8=3x+3\\ \Rightarrow4x-8-3x-3=0\\ \Rightarrow x-11=0\\ \Rightarrow x=11\)
\(c,\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Thay x=5 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{5-2}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)
Thay x=1 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{1-2}{1+1}=\dfrac{-1}{2}\)
a: \(A=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\)