tìm số tự nhiên n sao cho: 4n+9 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
\(\left(4n+6\right)⋮\left(2n+1\right)\\ \Rightarrow\left(4n+2+4\right)⋮\left(2n+1\right)\\ \Rightarrow\left[2\left(2n+1\right)+4\right]⋮\left(2n+1\right)\)
\(Mà2\left(2n+1\right)⋮\left(2n+1\right)\Rightarrow4⋮\left(2n+1\right)\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\Rightarrow n\in\left\{-2,5;-1,5;-1;0;0,5;1,5\right\}\)
Mà \(x\in N\Rightarrow x=0\)
a/
\(n+3⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{1;-1;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;-3;5\right\}\)
Mà n là stn
\(\Leftrightarrow n\in\left\{0;2;5\right\}\)
b/ \(4n+3⋮2n+1\)
\(\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)
n-1=1\(\Rightarrow\)n=2
n-1=2\(\Rightarrow\)n=3
n-1=4\(\Rightarrow\)n=5
Vậy n\(\in\){2;3;5}
b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}
2n-1=1\(\Rightarrow\)n=1
2n-1=5\(\Rightarrow\)n=3
Vậy n\(\in\){1;3}
\(4n+9⋮2n-1\Leftrightarrow11⋮2n-1\Leftrightarrow2n-1\in\left\{1;11\right\}\)
\(\Leftrightarrow n\in\left\{1;6\right\}\)
phải rỗ ràng ra chứ