Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)
n-1=1\(\Rightarrow\)n=2
n-1=2\(\Rightarrow\)n=3
n-1=4\(\Rightarrow\)n=5
Vậy n\(\in\){2;3;5}
b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}
2n-1=1\(\Rightarrow\)n=1
2n-1=5\(\Rightarrow\)n=3
Vậy n\(\in\){1;3}
4n - 5 chia hết cho 2n - 1
4n - 2 - 3 chia hết cho 2n - 1
Mà 4n - 2 chia hết cho 2n - 1
Nên 3 chia hết cho 2n - 1
2n - 1 thuộc U(3) = {-3 ; -1 ; 1 ; 3}
2n - 1 = -3 => n = -1
2n - 1= -1 => n = 0
2n - 1 = 1 => n = 1
2n - 1 = 3 => n = 2
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
Ta có
4n - 5 = 4n - 2 - 3 = 2x(2n - 1)-3
Vì 2x(2n-1)\(⋮\)2n - 1 \(\Rightarrow\)3\(⋮\)2n - 1
\(\Rightarrow2n-1\in\left(-3;-1;1;3\right)\)
mik bổ sung
\(\Rightarrow2n\in\left(-2;0;2;4\right)\)
\(\Rightarrow n\in\left(-1;0;1;2\right)\)
4n + 3 chia hết cho 2n + 1 (1)
Mà 2(2n + 1) chia hết cho 2n + 1\(\Rightarrow\)4n + 2 chia hết cho 2n + 1 (2)
Từ (1) và (2) suy ra (4n + 3) - (4n + 2) chia hết cho 2n + 1\(\Rightarrow\)1 chia hết cho 2n + 1.
\(\Rightarrow\)2n + 1 thuộc Ư(1) = {1}
2n + 1 = 1
2n = 1 - 1
2n = 0
n = 0 :2 =0
ta có 4n+2+1 chia hết cho 2n+1 mà 4n+2 chia hết cho 2n+1 suy ra 1 chia hết cho 2n+1 suy ra 2n+1 là Ư(1)={-1;1} suy ra n={-1;0}
Ta có:
4n - 5
= 4n - 2 - 3
= 2(2n - 1) - 3
4n - 5⋮2n - 1
⇔2(2n - 1) - 3⋮2n - 1
2(2n - 1)⋮2n - 1
=>3⋮2n - 1
hay 2n - 1∈Ư(3)
Ư(3) = {1;-1;3;-3}
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1
Vì n ∈ N nên n = {0;1;2}
\(4n+9⋮2n-1\Leftrightarrow11⋮2n-1\Leftrightarrow2n-1\in\left\{1;11\right\}\)
\(\Leftrightarrow n\in\left\{1;6\right\}\)
phải rỗ ràng ra chứ