Tìm m để 3 điểm A(2;-1), B(1;1), C(3; m+1) thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//Ox thì m-1=0
=>m=1
b: Thay x=-1 và y=1 vào (d), ta được:
-m+1+m=1
=>1=1(luôn đúng)
c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:
\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)
=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)
=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)
=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)
=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)
a: Thay x=-3 và y=2 vào (d), ta được:
-6m+9+4-3m=2
=>-9m=-11
hay m=11/9
b: Thay x=0 và y=-3 vào (d), ta được:
4-3m=-3
=>3m=7
hay m=7/3
c: Thay x=3 và y=8 vào (d), ta được:
6m-9+4-3m=8
=>3m=13
hay m=13/3
Vậy với M(5; 7) hoặc M(5; 0) thì tam giác ABM vuông tại M.
Vậy P(-5; 2)
b: Thay x=-1 và y=1 vào (d), ta được:
-2m+1+m=1
hay m=0
a)Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2
\(\Rightarrow2=\left(m-2\right).0+m\) \(\Leftrightarrow m=2\)
Vậy m=2 thì đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2
b) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3
\(\Rightarrow0=\left(m-2\right)\left(-3\right)+m\) \(\Leftrightarrow m=3\)
Vậy...
c) Hàm số đi qua điểm A(1;2)
\(\Rightarrow2=\left(m-2\right).1+m\)\(\Leftrightarrow m=2\)
Vậy...
a) Đồ thị cắt trục tung tại điểm có tung độ bằng 2
\(\Rightarrow\) điểm đó có tọa độ là \(\left(0;2\right)\)
\(\Rightarrow2=m\)
b) Đồ thị cắt trục hoành tại điểm có hoành độ bằng -3
\(\Rightarrow\) điểm đó có tọa độ là \(\left(-3;0\right)\)
\(\Rightarrow0=-3m+6+m=-2m+6\Rightarrow m=3\)
c) Đồ thị đi qua điểm \(A\left(1;2\right)\)
\(\Rightarrow2=m-2+m\Rightarrow m=2\)
a: Thay x=1 và y=3 vào (d), ta đc:
m-1+2=3
=>m+1=3
=>m=2
b: Thay y=0 vào (d), ta đc:
x-1=0
=>x=1
Thay x=1 và y=0 vào (d1), ta được:
2*1+m-1=0
=>m=-1
a. d qua gốc tọa độ khi:
\(m-2=0\Rightarrow m=2\)
b. d cắt trục tung tại điểm có tung độ là 1/3 khi:
\(m-2=\dfrac{1}{3}\Rightarrow m=\dfrac{7}{3}\)
c. d qua A khi:
\(2\left(1-4m\right)+m-2=-3\)
\(\Rightarrow m=\dfrac{3}{7}\)
Gọi đường thẳng đi qua 3 điểm A,B,C có dạng y=ax+b
Ta có đồ thị y=ax+b đi qua điểm A(2;-1)\(\Rightarrow-1=2a+b\)(1)
Ta lại có đồ thị y=ax+b đi qua điểm B(1;1)\(\Rightarrow1=a+b\)(2)
Từ (1),(2) ta có hệ phương trình \(\left\{{}\begin{matrix}-1=2a+b\\1=a+b\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đồ thị đó có dạng y=-2x+3
Ta có đồ thị y=-2x+3 đi qua điểm C(3;m+1)\(\Rightarrow m+1=-2.3+3\Leftrightarrow m=-4\)
Vậy m=-4 thì 3 điểm A,B,C thẳng hàng