phan tich da thuc thanh nhan tu
x4 +y4 +64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-64=x^3-4^3\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+4^2\right)\)
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
Sửa đề: x^4+64
x^4+64
=x^4+16x^2+64-16x^2
=(x^2+8)^2-(4x)^2
=(x^2-4x+8)(x^2+4x+8)