cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0 chung minh rang a^20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì b>0 ,d>0 ,a/b<c/d
suy ra ad<bc
suy ra ad+ab<bc+ab
suy ra a(b+d) <b(a+c)suy ra a/b <a+c/b+d
lại có ad <bc suy ra ad+cd <bc+cd
suy ra d(a+c )<c(b+d)suy ra a+c/b+d <c/d
vậy a/b <a+c/b+d<c/d
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm
Ta có :
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có đc:\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Từ (1) và (2) suy ra đc:\(\frac{a}{a-b}=\frac{c}{c-d}\)