Bài 1 : Cho 3 số tự nhiên a , b ,c . Trong đó a , b là các số chia cho 5 dư 3 , còn c chia cho 5 dư 2
a) CHứng mình rằng : a + e ; a - b chia hết cho 5
b) Tổng ( hiệu ) sau có chia hết cho 5 ko ? a + b + c ; a + b - c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài
\(a+2⋮5;b+2⋮5;c+3⋮5\)
\(\Rightarrow a+2+b+2+c+3=\left(a+b+c+2\right)+5⋮5\)
\(\Rightarrow a+b+c+2⋮5\Rightarrow\left(a+b+c\right)\) không chia hết cho 5
Đặt a = 5k + 3; b = 5q + 3; c = 5x + 2
=> a + b + c = (5k + 3) + (5q + 3) + (5x + 2)
=> a + b + c = (5k + 5q + 5x) + (3 + 3 + 2)
=> a + b + c = 5(k + q + x) + 8 không chia hết cho 5 (ĐPCM)
do a,b khi chia 5 có cùng số dư=>a-b chia hết cho 5 (1)
do c chia 5 dư 2 => c+ 1 số chia hết cho 5 thì vẫn chia 5 dư2
từ 1 =>a-b+c chia 5 dư 2
chọn đáp án b
So chia cho 5 va du 3 la so : 23
Nên ab là số :23
Số chia 5 dư 2 là :7
Vậy 3 số tự nhiên a,b,c la 237
Mà đề bài tìm số dư khi a-b+ccho 5
Ta the so:2-3+7=6
6:5 =1,2 du 1
Vay chon dap an A
ko chac
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài giải ;
a) Vì a , b chia cho 5 dư 3 , nên :
\(a=5.q+3\left(q\in N\right)\)
và \(b=5.k+3\left(k\in N\right)\)
Vì c chia cho 5 dư 2 => \(c=5.t+2\left(t\in N\right)\)
=> \(a+c=\left(5q+3\right)+\left(5t+2\right)\)
\(=5q+3+5t+2\)
\(=\left(5q+5t\right)+\left(3+2\right)\)
\(=5.\left(q+t\right)+5\)
Vì \(5⋮5\)=> \(5.\left(q+t\right)⋮5\)=> \(5.\left(q+t\right)+5⋮5\)
hay \(a+c⋮5\)
Vậy \(a+c⋮5\)
a)Sửa đề: CMR: a + c chia hết cho 5 (chứ "e" ở đâu ra :) )
Ta có:
a : 5 dư 3
c : 5 dư 2
Suy ra: (a + c) : 5 dư 3 + 2 = 5
Đặt (a+c) :5 = k (dư 5).Nhưng theo qui tắc thì số dư luôn nhỏ hơn số chia.Do đó ta thực hiện tiếp phép chia được: 5:5=1 (dư 0)
Do đó (a+c) : 5 =k1 (dư 0)
Vậy (a + c) chi hết cho 5
* a- b làm tương tự
b) a : 5 dư 3
b chia 5 dư 3
c chia 5 dư 2
Do đó (a+b+c):5 (dư 3+3+2=8)
Đặt (a+b+c) : 5 = k (dư 8).Số dư nhỏ hơn số chia nên ta thực hiện phép tính tiếp tục: 8 : 5 = 1 dư 3
Do đó (a+b+c) : 5 = k1 (dư 3)
Vậy (a+b+c) không chia hết cho 5
*câu còn lại làm y chang!