cho tam giác ABC vuông tại A đường cao AH biết AB = 9cm , AC = 12 cm tính độ dài các đoạn thẳng HB , HC , HA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm được
BC = 3 13 cm, AH = 18 13 13 cm, BH = 12 13 13 cm và CH = 27 13 13 cm
b, Tìm được BC=25cm, AC=20cm, HC=16cm và AH=12cm
xét tg AHC có H=90 độ=> AC2=AH2+HC2( dl Py-ta-go)
=> HC2= AC2-AH2=> HC2= 92,16=9,6 cm
Xét tg ABC và tg HAC có H=A=90 độ
C chung
=> tg ABC~tg HAC(g,g)
=> AH/AB=AC/HC
=> 7,2/AB= 12/9,6=> AB= 7,2.12:9,6=9 cm
Xét tg ABC có A=90 độ(gt)
=> CB2=AB2+AC2(dl PY-ta -go)
=> BC2=225=> BC=15 cm
Mà BH+HC=BC=> BH=BC-HC=> BH=15-9,6=5,4 cm
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)
a: BC=căn 6^2+9^2=3*căn 13cm
AH=6*9/3*căn 13=18/căn 13(cm)
BH=AB^2/BC=12/căn 13(cm)
CH=9^2/3*căn 13=27/căn 13(cm)
b: BC=AB^2/BH=25cm
CH=25-9=16cm
AC=căn 16*25=20cm
c: AB=căn 55^2-44^2=33cm
AH=33*44/55=26,4(cm)
BH=33^2/55=19,8cm
CH=55-19,8=35,2cm
d: CH=căn 40^2-24^2=32cm
BC=AC^2/CH=50cm
AB=căn 50^2-40^2=30cm
BH=50-32=18cm
e: HB=AH^2/HC=7,2cm
BC=7,2+12,8=20cm
AB=căn 7,2*20=12(cm)
AC=căn 12,8*20=16(cm)
f: AH=căn 72*12,5=30(cm)
BC=BH+CH=84,5cm
AB=căn 12,5*84,5=32,5cm
AC=căn 84,5^2-32,5^2=78cm
Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
A B 2 + A C 2 = B C 2 ⇔ 3 2 + 4 2 = B C 2
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=9\cdot16=144\)
hay AH=12cm
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20(cm)
c) Xét ΔAHB vuông tại H và ΔMHB vuông tại H có
BH chung
HA=HM
Do đó: ΔAHB=ΔMHB
Suy ra: AB=MB
hay MB=15(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8(cm)
ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
\(\dfrac{AB}{AC}=\dfrac{5}{7}\Rightarrow AB=\dfrac{5AC}{7}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5}{7}AC\right)^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow AC^2=666\Rightarrow AC=3\sqrt{74}\)
\(\Rightarrow AB=\dfrac{15\sqrt{74}}{7}\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\dfrac{222}{7}\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=21\left(cm\right)\)
\(CH=BC-BH=\dfrac{75}{7}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=15(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5.4\left(cm\right)\\CH=9.6\left(cm\right)\end{matrix}\right.\)