K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

Tớ biết nè..

sin ABC=4/5

=>AH/AB=4/5

mà AH/AB=2/3

nên đề sai rồi bạn

21 tháng 5 2019

ta có ab\(^2\)+ ac\(^2\) =  90 + 160

                                =250

lại có bc\(^2\) =250

\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )

\(\Rightarrow\)tam giác abc vuông tại a

\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)

\(\tan c\)\(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)

\(\widehat{b}\)\(\approx\) 53.1

\(\widehat{c}\) \(\approx\) 36.9

áp dụng htl vào tam giác abc vuông tại a có

ah * bc = ab * ac

\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)

áp dụng đ/lí pytago vào tam giác ahb vuông tại h có

bh\(^2\)= ab\(^2\)- ah\(^2\)=324

\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)

áp dụng đ/lí pytago vào tam giác ahc vuông tại h có

ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024

\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

a: Xét ΔBAK có BA=BK

nên ΔBAK cân tại B

b: góc BAH+góc B=90 độ

góc ACB+góc B=90 độ

=>góc BAH=góc ACB

góc HAK+góc BKA=90 độ

góc KAI+góc BAK=90 độ

mà góc BKA=góc BAK

nên góc HAK=góc KAI

d: (AH+BC)^2=AH^2+2*AH*BC+BC^2

=AH^2+2*AB*AC+AB^2+AC^2

=AH^2+(AB+AC)^2>(AB+AC)^2

=>AH+BC>AB+AC

c: AH+BC>AB+AC

=>BC-AB>AC-AH