K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

Ta có:

\(A=n^3-6n^2+9n-2\)

\(A=n^3-2n^2-4n^2+8n+n-2\)

\(A=n^2\left(n-2\right)-4n\left(n-2\right)+\left(n-2\right)\)

\(A=\left(n-2\right)\left(n^2-4n+1\right)\)

Để A là số nguyên tố

\(\Rightarrow\left[{}\begin{matrix}n-2=1\\n^2-4n+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=3\\n^2-4n=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=3\\n\left(n-4\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=3\\n=0\\n=4\end{matrix}\right.\)

7 tháng 11 2021

bn ơi cho mik hỏi -2 có là số nguyên tố ko

 

15 tháng 3 2020

\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)

Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)

\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)

\(\Rightarrow A⋮2\forall n\in N\)

Mà 2 là số nguyên tố duy nhất mà chia hết cho 2

\(\Rightarrow n^3-6n^2+9n-2=2\)

\(\Leftrightarrow n^3-6n^2+9n-4=0\)

Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))

Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

9 tháng 4 2021

undefined

9 tháng 4 2021

`P=n^3-n^2+n-1`

`=n^2(n-1)+(n-1)`

`=(n-1)(n^2+1)`

Vì n là stn thì p là snt khi

`n-1=1=>n=2`

Vậy n=2

5 tháng 1 2017

 1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24 = 3(3n+8) 
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b) 
Từ (a) và (b) => Mâu thuẫn 
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

12 tháng 11 2023

giúp tui i mn oiiiiiiiiiiiiiiiiiiiiiiiiiiii