cho tam giác ABC vuông tại A, AC>AB và AH là đường cao. Biết BC=13, AH=6
Tính HB, HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
a: AB=căn 4,5*12,5=7,5cm
AC=căn 8*12,5=10cm
b: HB=(13+5)/2=9cm
HC=13-9=4cm
AB=căn 9*13=3 căn 13cm
AC=căn 4*13=2căn 13cm
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{\dfrac{3}{4}AB^2}\\ \to\dfrac{1}{AB^2}+\dfrac{4}{3AB^2}=\dfrac{1}{23,04}\\ \to\dfrac{7}{3AB^2}=\dfrac{1}{23,04}\\ \to AB^2=53,76\\ \to AB=\dfrac{8\sqrt{21}}{5}\left(cm\right)\\ \to AC=\dfrac{32\sqrt{21}}{15}\left(cm\right)\\ \to BC=\sqrt{AB^2+AC^2}=\dfrac{8\sqrt{21}}{3}\left(cm\right)\)
Hệ thức lượng:
\(HB=\dfrac{AB^2}{BC}=\dfrac{24\sqrt{21}}{25}\left(cm\right)\\ HC=\dfrac{AC^2}{BC}=\dfrac{7168-200\sqrt{21}}{75}\left(cm\right)\)
AB/AC=4/3
=>HB/HC=16/9
=>HB/16=HC/9=k
=>HB=16k; HC=9k
AH^2=HB*HC
=>144k^2=24^2=576
=>k=2
=>HB=32cm; HC=18cm
AB=căn 32*50=40cm
AC=căn 18*50=30cm
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
theo hệ thức lượng tam giác vuông
AC^2 = HC*BC = 16*BC (1)
AH^2 = HC*BH = 16*BH (2)
1/AH^2 = 1/AC^2 + 1/AB^2 (3)
thay 1,2 vào 3:
1/16*BH = 1/16*BC + 1/15^2 (4)
mặt khác:
BH = BC - HC = BC -16
thay vào 4:
1/16*(BC -16) = 1/16*BC + 1/225
<=> 1/(BC - 16) - 1/BC = 16/225
<=> (BC -BC +16)/((BC - 16)*BC) =16/225
<=> BC^2 - 16*BC - 225 = 0
=> BC = 25 (thỏa mãn) BC = -9 (loại)
thay vào 1 ta có AC = 20 cm
2 ta có AH = 12 cm
Cố lên bạn nha!
Đặt HB=x(cm,x>0) => BC=HB+HC=x+16
Ta có: Tam giác ABC vuông tại A có AH là đường cao
=>AB2=HB.BC
=>152=x.(x+16)
=>225=x2+16x
=>x2+16x-225=0
=>x2+25x-9x-225=0
=>x.(x+25)-9.(x+25)=0
=>(x+25).(x-9)=0
=>x=-25(loại) hay x=9(nhận)
Vậy HB=9(cm)
Ta có: AH2=HB.HC(hệ thức lượng)
=>AH2=9.16=144
=AH=12(cm)
Ta có: AC2=HC.BC(hệ thức lượng)
=>AC2=16.25=400
=>AC=20(cm)
Ta có: BC=HB+HC=9+16=25(cm)
Vẽ hơi xấu , thông cảm nha !
Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) !
Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)= \(8\sqrt{2}\)
Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB )
tiếp tục tính AB 2 = BC2 - AC2 . Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !
Theo đề, ta có:
\(HB\left(13-HB\right)=36\)
\(\Leftrightarrow HB^2-13HB+36=0\)
\(\Leftrightarrow HB=4\left(cm\right)\)
hay HC=9(cm)
Áp dụng HTL:
\(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=78\Rightarrow AB=\dfrac{78}{AC}\)
\(AB^2+AC^2=BC^2=169\\ \Leftrightarrow\dfrac{6084}{AC^2}+AC^2=169\\ \Leftrightarrow\dfrac{6084+AC^4}{AC^2}=\dfrac{169AC^2}{AC^2}\\ \Leftrightarrow AC^4-169AC^2+6084=0\\ \Leftrightarrow AC^4-117AC^2-52AC^2+6084=0\\ \Leftrightarrow AC^2\left(AC^2-117\right)-52\left(AC^2-117\right)=0\\ \Leftrightarrow\left(AC^2-52\right)\left(AC^2-117\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}AC^2=52\\AC^2=117\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AC=2\sqrt{13}\\AC=3\sqrt{13}\end{matrix}\right.\left(AC>0\right)\)
Mà AC là cạnh lớn nên \(AC=3\sqrt{13}\left(cm\right)\) và \(AB=2\sqrt{13}\left(cm\right)\)
Tiếp tục áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=9\left(cm\right)\end{matrix}\right.\)