K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

19 tháng 9 2019

a) Chứng minh được ∆ A M B   =   ∆ A M C  (c.c.c).

Từ đó suy ra AM là tia phân giác của góc BAC.

b) Xét tam giác ABC có AM, BD,CE là các tia phân giác. Từ tính chất ba đường phân giác trong tam giác, suy ra ba đường thẳng AM,BD,CE đồng quy.

22 tháng 3 2017

Bai nay boi duong hs gioi cap tinh doa@@@

25 tháng 10 2017

DF//BC nhé

12 tháng 8 2017

cô giáo mk bày cho nè

Cho hình bình hành ABCD,O là giao điểm của hai đường chéo,Gọi M N lần lượt là trung điểm OB OD,Chứng minh AMCN là hình bình hành,Hình bình hành ABCD cần có thêm điều kiện gì để AMCN là hình chữ nhật,AN cắt CD tại E,CM cắt AB tại tâm O,Chứng minh rằng,E và F đối xứng với nhau qua tâm O,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

12 tháng 8 2017

Tại sao O là điểm chính giữa của AC và BD

23 tháng 8 2018

a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O

=> O là trung điểm của AC và BD (t/c của hình bình hành)

=> OB=OD. Mà BE=DF(gt)

=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F

=> O là trung điểm của EF

Xét tứ giác AECF có: AC cắt EF tại O

Mà O là trung điểm của AC( c/m trên )

O là trung điểm của EF( c/m trên )

=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)

b) Để AECF là hình thoi => \(AC\perp EF\) tại O

=> \(AC\perp BD\) tại O \(\left(E,F\in\left(O\right)\right)\)

Xét hình bình hành ABCD có: \(AC\perp BD\) tại O (c/m trên)

=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)

Vậy để AECF là hình thoi thì ABCD là hình thoi

26 tháng 7 2021

a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O

=> O là trung điểm của AC và BD (t/c của hình bình hành)

=> OB=OD. Mà BE=DF(gt)

=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F

=> O là trung điểm của EF

Xét tứ giác AECF có: AC cắt EF tại O

Mà O là trung điểm của AC( c/m trên )

O là trung điểm của EF( c/m trên )

=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)

b) Để AECF là hình thoi => AC⊥EFAC⊥EF tại O

=> AC⊥BD tại O (E,F∈(O)

Xét hình bình hành ABCD có: AC⊥BDAC⊥BD tại O (c/m trên)

=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)

Vậy để AECF là hình thoi thì ABCD là hình thoi