chứng minh rằng
k là số mũ
10k +8k + 6k - 9k + 7k + 5k ko chia hết cho 2
b; 2017k +2018k +2019+ có chia hết cho 2
c; 2031 mũ 1111 - 2017 mũ 2020 có chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng Lê Bảo NgọcTrần Việt LinhNguyễn Huy TúNguyễn Huy ThắngSilver bulletPhương AnĐinh Tuấn ViệtNguyễn Thế BảoNguyễn Thị Anh
=(7k+3+88k)(60k^3+\(\frac{4}{k}\))
=(95k+3)(60k^3+\(\frac{4}{k}\))
phần còn lại tự lm nha
Chứng minh tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11 nghĩa là ta chứng minh nếu \(k^2-5k+8\)chia hết cho 11 thì \(k^2+6k+9\)cũng chia hết cho 11 và ngược lại.
Ta có :
\(k^2-5k+8\)chia hết cho 11
Mà \(11k\)chia hết cho 11
\(11\)chia hết cho 11
\(\Rightarrow k^2-5k+8+11k+11\)chia hết cho 11
\(\Rightarrow k^2+6k+19\)chia hết cho 11
Chứng minh ngược lại :
\(k^2+6k+19\)chia hết cho 11
Mà \(11k;11\)chia hết cho 11
\(\Rightarrow k^2+6k+19-11k-11\)chia hết cho 11
\(\Rightarrow k^2-5k+8\)chia hết cho 11
Vậy ...
pn lớp mấy vậy
như vậy là pn phải cố hỉu ik chứ
có 6k và 12k vì khai triển hằng đẳng thức ra:
\(\left(3k+1\right)^2=9k^2+6k+1.\)
tương tự với \(\left(3k+2\right)^2=9k^2+12k+4\)
TH p=3k+2 sai:vì \(\left(3k+2\right)^2-1=9k^2+12k+3\)
+)nếu chưa học về hằng đẳng thức thì có thể nhân ra \(\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=9k^2+3k+3k+1=9k^2+6k+1\)
còn nếu chưa hiểu thì có thể hiểu
3k+1 chia 3 dư 1=>\(\left(3k+1\right)^2\)chia 3 dư 1=>\(\left(3k+1\right)^2-1⋮3\)
tương tự với Th còn lại
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
bài này hơi rắc rối ; bạn nên sử dụng phương pháp qui nạp toán học 2 lần
với \(k=1\) ta có : \(5k^4+10k^3+10k^2+5k=30⋮3\)
giả sữ : \(k=n\) thì ta có : \(5n^4+10n^3+10n^2+5n⋮30\)
khi đó với \(k=n+1\) thì ta có :
\(5k^4+10k^3+10k^3+5k=5\left(n+1\right)^4+10\left(n+1\right)^3+10\left(n+1\right)^2+5\left(n+1\right)\)
\(=5\left(n^4+4n^3+6n^2+4n+1\right)+10\left(n^3+3n^2+3n+1\right)+10\left(n^2+2n+1\right)+5\left(n+1\right)\)
\(=5n^4+10n^3+10n^2+5n+20n^3+60n^2+70n+30\)
giờ ta chỉ cần chứng minh \(20n^3+60n^2+70n+30⋮30\) là được
với \(n=1\) ta có : \(20n^3+60n^2+70n+30=180⋮3\)
giả sữ : \(n=a\) thì ta có : \(20a^2+60a^2+70a+30⋮3\)
khi đó với \(n=a+1\) thì ta có :
\(20\left(n\right)^3+60n^2+70n+30=20\left(a+1\right)^3+60\left(a+1\right)^2+70\left(a+1\right)+30\)
\(=20\left(a^3+3a^2+3a+1\right)+60\left(a^2+2a+1\right)+70\left(a+1\right)+30\)
\(=20a^3+60a^2+70a+30+60a^2+180a+150⋮3\)
\(\Rightarrow20n^3+60n^2+70n+30⋮30\)
\(\Rightarrow5k^4+10k^3+10k^2+5k⋮30\)
vậy \(5k^4+10k^3+10k^2+5k\) chia hết cho \(30\) với \(k\in N^{\circledast}\) (đpcm)