K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2014

VÌ 1 LẦN NGƯỜI TA LẤY 1 K

28 tháng 11 2014

vi moi lan nguoi ta lay 1K

20 tháng 2 2021

a) * Lưu ý :Thiếu điều kiện (k\(\ne0\)) vì nếu k không \(\ne0\) thì M là số chính phươngVới k chẵn thì 19k chia 4 dư 1, 5k chia 4 dư 1, 1996​k​ \(⋮\) 4.Do đó, với k chẵn thì M = 19k + 5k + 1995k + 1996chia cho 4 dư 3

\(\Rightarrow\)M không là số chính phương.(đpcm)

b) 20042004.k \(⋮\)4, 2003 chia 4 dư 3 nên N chia 4 dư 3

\(\Rightarrow\)N không là số chính phương (đpcm)

Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)

3k+2 chia hết cho d => 15k+10 chia hết cho d

5k+3 chia hết cho d => 15k+9 chia hết cho d

=> 15k+10-15k-9 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N*

=> d=1

=> 3k+2 và 5k+3 nguyên tố cùng nhau

LINK:https://olm.vn/hoi-dap/detail/8739623501.html

16 tháng 10 2021

cái này mình chưa học đến

24 tháng 9 2021

\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)

+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số

+) Nếu p chia cho \(6\)\(1\) thì \(p=6k+1\)

+) Nếu p chia cho \(6\)\(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.

+) Nếu p chia cho \(6\)\(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(5\) thì \(p=6k+5\)

Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :

\(p=6k+1\) hoặc \(p=6k+5\)

b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.

Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.

9 tháng 12 2019

a)số nguyên tố p chia cho 6 có số dư là 1;2;3;4;5

⇒⇒p có dạng 6k+1;6k+2;6k+3;6k+4;6k+5

(6k+2)⋮2;(6k+3)⋮3;(6k+4)⋮2(6k+2)⋮2;(6k+3)⋮3;(6k+4)⋮2

vậy các số nguyên tố lớn 3 thường có dạng 6k+1 và 6k+5