K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

Ta có: |x - 1| \(\ge\)0 với mọi x => |x - 1| + 5 \(\ge\)5

=> A \(\ge\)5

Dấu "=" xảy ra<=> x - 1 = 0 <=> x = 1

Vậy MinA = 5 <=> x=  1

22 tháng 9 2021

\(A=|x-1|+5\)

Để A nhỏ nhất thì \(|x-1|\)phải nhỏ nhất

Mà: \(|x-1|\ge0\)

\(\Rightarrow\)\(|x-1|\)nhỏ nhất bằng 0

\(\Rightarrow\)\(|x-1|=0\)

\(\Rightarrow\)\(x-1=0\)

\(\Rightarrow\)\(x=1\)

Vậy giá trị nhỏ nhất của A là 5 khi \(x=1\)

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

25 tháng 8 2021

a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)

\(ĐTXR\Leftrightarrow x=4\)

b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=1\)

c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

a: Ta có: \(A=-x^2-8x+1\)

\(=-\left(x^2+8x-1\right)\)

\(=-\left(x^2+8x+16-17\right)\)

\(=-\left(x+4\right)^2+17\le17\forall x\)

Dấu '=' xảy ra khi x=-4

b: Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

12 tháng 7 2021

a)\(A=2x+1-x^2=2-\left(x^2-2x+1\right)=2-\left(x-1\right)^2\le2;\forall x\)

\(\Rightarrow A_{max}=2\Leftrightarrow x=1\)

b)\(B=4x-4x^2-5=-4-\left(4x^2-4x+1\right)=-4-\left(2x-1\right)^2\le-4;\forall x\)

\(\Rightarrow B_{max}=-4\Leftrightarrow x=\dfrac{1}{2}\)

12 tháng 7 2021

a) `A=2x+1-x^2`

`=-(x^2-2x-1)`

`=-(x^2-2x+1)+2`

`=-(x-1)^2+2`

Có: `-(x-1)^2 <= forall x => -(x-1)^2+2 <=2`

`=> A_(max)=2 <=> x=1`

b) `B=4x-4x^2-5`

`=-(4x^2-4x+5)`

`=-(4x^2-4x+1)-4`

`=-[(2x)^2-2.2x.1+1^2]-4`

`=-(2x-1)^2+4`

`=> B_(max)=4 <=> x=1/2`

28 tháng 1 2022

undefined

NV
30 tháng 6 2021

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

30 tháng 6 2021

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

24 tháng 7 2019

Ta có \(A=\frac{3x+4}{x^2+1}\)

=> \(Ax^2-3x+A-4=0\)

\(A=0\)

=> \(x=-\frac{4}{3}\)

\(A\ne0\)=> \(x\ne-\frac{4}{3}\)

=> \(\Delta=9-4A\left(A-4\right)\ge0\)

=> \(4A^2-16A-9\le0\)

=> \(-\frac{1}{2}\le A\le\frac{9}{2}\)

=> \(MinA=-\frac{1}{2}\)khi x=-3(TM \(x\ne\frac{-4}{3}\))

\(Max=\frac{9}{2}\)khi \(x=\frac{1}{3}\)(TM \(x\ne-\frac{4}{3}\))

4 tháng 11 2017

bằng 1 nha bạn

22 tháng 9 2021

`A =|2x-1|+5`

Vì `|2x-1| >= 0`

`-> |2x-1|+5 >= 5`

`->A >= 5`

Dấu "`=`" xảy ra khi : `<=> |2x-1|=0 <=>x=1/2`

Vây `min A=5 <=>x=1/2`

11 tháng 3 2022

a, \(A-x^2+5\le5\)Dấu ''='' xảy ra khi x =  0

b, \(B=-2\left(x-1\right)^2+3\le3\)Dấu ''='' xảy ra khi x  =1 

c, \(C=-\left|3x-2\right|+5\le5\)Dấu ''='' xảy ra khi x = 2/3