chứng tỏ rằng với m và n thuộc N thì
n.n(n+4).(n+8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n thuộc N thì n chia cho 3 có ba dạng là: 3k + 1, 3k + 2 và 3k (k thuộc N)
+) Với n = 3k thì n ⋮ 3 => n(n + 4)(n + 8) ⋮ 3 (1)
+) Với n = 3k + 1 thì n + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3
=> n + 8 ⋮ 3
=> n(n + 4)(n + 8) ⋮ 3 (2)
+) Với n = 3k + 2 thì n + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3
=> n + 4 ⋮ 3
=> n(n + 4)(n + 8) ⋮ 3 (3)
Từ (1)(2)(3) => n(n + 4)(n + 8) ⋮ 3 với mọi n thuộc N
Giả sử
- Nếu n=3k ( k\(\in\)N) thì n \(⋮\)3 => n(n+4)(n+8) \(⋮\)3
- Nếu n= 3k + 1 (k\(\in\)N) thì n+8=3k+1+8=3k+9=3(k+3) \(⋮\)3
- Nếu n=3k+2 (k\(\in\)N) thì n+4=3k+2+4=3k+6=3(k+2) \(⋮\)3
=>Với n \(\in\)N thì n(n+4)(n+8) \(⋮\)3
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
Chứng minh rằng nếu (5n + 1) là số chẵn thì n là số lẻ.
Giải: Nếu 5n + 1 là số chẵn thì =>
5n + 1 có dạng 2k (k là số tự nhiên)
=> 5n + 1 = 2k
=> 5n = 2k - 1
Do 2k - 1 là số lẻ => 5n là số lẻ (1)
Nếu n là số chẵn thì 5n chẵn => mâu thuẩn với (1)
=> n phải là số lẻ
nếu n là số chẵn thì n+4 là số chẵn suy ra tích (n+4)x(n+5) là số chẵn thì tích đó chia hết cho 2
nếu n là số lẻ thì n+5 là số chẵn nên tích ( n+4)x(n+5) là số chẵn nên tích đó cũng chia hết cho 2