K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Ta có:a)\(^{3^{600}}\)=\(^{\left(3^3\right)^{200}}\)=\(^{27^{200}}\)                                                 \(^{4^{400}}\)=\(^{\left(4^2\right)^{200}}\)=\(^{16^{200}}\)

vì 27^200>16^200             =>   3^600>4^400

b)   \(^{4^{32}=4^{2.16}=16^{16}}\)                 vì 16^16>16^15      =>   4^32>16^15

22 tháng 10 2018

\(3^{600}=3^{200.3}=\left(3^3\right)^{200}=9^{200}^{_{\left(1\right)}}\)

\(4^{400}=\left(2^2\right)^{400}=2^{800}=2^{200.4}=\left(2^4\right)^{200}=16^{200}_{\left(2\right)}.\)

\(\left(1\right),\left(2\right)\Rightarrow4^{400}>3^{600}\)

\(4^{32}=\left(2^2\right)^{32}=2^{64}_{\left(1\right)}\)

\(16^{15}=\left(2^4\right)^{15}=2^{60}_{\left(2\right)}\)

\(\left(1\right),\left(2\right)\Rightarrow4^{32}>16^{15}\)

31 tháng 10 2016

4^32=16^16>16^15

GTNN của A=2 khi x=3

31 tháng 10 2016

4^32=16^16

mà 16^16>16^15

suy ra 4^32>16^15

GTNN của A =2 khi x =3

3 tháng 12 2023

\(32^{15}=\left(2^5\right)^{15}=2^{5.15}=2^{75}\)

\(4^{39}=\left(2^2\right)^{39}=2^{2.39}=2^{78}\)

Do \(2^{78}>2^{75}\)

\(\Rightarrow4^{39}>32^{15}\)

\(\Rightarrow1+4+4^2+...+4^{39}>32^{15}\)

\(\Rightarrow3\left(1+4+4^2+...+4^{39}\right)>32^{15}\)

Vậy \(A>B\)

3 tháng 12 2023

mọi ng giúp mik với

 

27 tháng 9 2016

A= 80.(34 + 1)(38 + 1)(316 + 1)(332 + 1)

A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)

A = (316 - 1)(316 + 1)(332 + 1)

A = (332 - 1)(332 + 1)

A = 364 - 1 < 364 = B

=> A < B

17 tháng 8 2016

Ta có : 

\(16^{15}=\left(4^2\right)^{15}=4^{30}\)\(4^{32}\)

Vì \(4^{30}< 4^{32}\)

=> \(16^{15}< 4^{32}\)

k mik nha

18 tháng 7 2017

\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

Vậy \(A< B\)

27 tháng 10 2014

1). 4^x:16^4=32^2

=>2^2x:(2^4)^4=(2^5)^2

=>2^2x:2^16=2^10

=>2^2x=2^10.2^16

=>2^2x=2^26

=>2x=26

=>x=26:2=13

2)Ta có:

+)3^1000=(3^4)^250=81^250

+)5^750=(5^3)^250=125^250

Vì :81^250<125^250 nên 3^1000<5^750

5 tháng 7 2017

Nó hơi dài cậu chờ tí nka !

5 tháng 7 2017

Mình ghi nhầm đề bài 1 tí đề bài là :

So sánh 2 số A và B biết : 

A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1