Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(16^{15}=\left(4^2\right)^{15}=4^{30}\); \(4^{32}\)
Vì \(4^{30}< 4^{32}\)
=> \(16^{15}< 4^{32}\)
k mik nha
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
1 so sánh
2^165=(2^5)^33
3^130=(3^5)^26
Vì 2^5<3^5
suy ra 2^165<3^130
2.
A=0,5-|x+3|<hoặc=0,5
Dấu bằng xảy ra khi x+3=0
x =0-3=-3
Vậy GTLN của A bằng 0,5 khi x bằng -3
a.
\(\frac{2}{-7}< 0\)
\(0< 0,25\)
\(\Rightarrow\frac{2}{-7}< 0,25\)
\(\Rightarrow y< x\)
b.
\(-\frac{3}{101}< 0\)
\(0< \frac{1}{97}\)
\(\Rightarrow\frac{-3}{101}< \frac{1}{97}\)
\(\Rightarrow x< y\)
c.
\(\frac{4}{-3}< 0\)
\(0< \frac{-1}{-103}\)
\(\Rightarrow\frac{4}{-3}< \frac{-1}{-103}\)
\(\Rightarrow x< y\)
4^32=16^16>16^15
GTNN của A=2 khi x=3
4^32=16^16
mà 16^16>16^15
suy ra 4^32>16^15
GTNN của A =2 khi x =3