Xét xem hàm số sau là hàm đồng biến hay nghịch biến:a) \(y= \dfrac{x+1}{x-1}\) b) \(y=x^2-2x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y = 1 – 5x là hàm số bậc nhất có a = -5, b = 1, nghịch biến vì a = -5 < 0
b) y = -0,5x là hàm số bậc nhất có a = -0,5, b = 0, nghịch biến vì a = -0,5 < 0
c) y = √2(x - 1) + √3 = √2 x + √3 - √2 là hàm số bậc nhất có a = √2, b = √3 - √2, đồng biến vì a = √2 > 0
d) y = 2 x 2 + 3 không phải là hàm số bậc nhất (vì số mũ của x là 2)
y = √2(x - 1) + √3 = √2 x + √3 - √2 là hàm số bậc nhất có a = √2, b = √3 - √2, đồng biến vì a = √2 > 0
\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)
Hs bậc nhất là a,b,d,e
\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)
Ta có: y = ( 2 – 1)x + 1 là hàm số bậc nhất
Hệ số a = 2 – 1, hệ số b = 1
Vì 2 – 1 > 0 nên hàm số đồng biến
Ta có: y = 3 (x - 2 ) = y = 3 x - 6 là hàm số bậc nhất
Hệ số a = 3 , b = - 6
Vì 3 > 0 nên hàm số đồng biến
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4}=-\dfrac{4-12}{4}=\dfrac{-\left(-8\right)}{4}=2\end{matrix}\right.\)
=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1
a: \(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-1}-\dfrac{x_2+1}{x_2-1}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2-x_1+x_2-1-x_1x_2+x_2-x_1+1}{\left(x_1-1\right)\left(x_2-1\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{-2}{\left(x_1-1\right)\left(x_2-1\right)}\)
Nếu x1<1; x2<1 thì (x1-1)(x2-1)>0
=>A<0
=>Hàm số nghịch biến
Nếu x1>1; x2>1 thì (x1-1)(x2-1)>0
=>A<0
=>Hàm số nghịch biến