K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

vào câu hỏi tương tự đi

13 tháng 10 2018

Bài này quen quen nhể:)) 

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\)\(3^n.3^2-2^{n-1}.2^3+3^n-2^{n-1}.2\)

\(=\)\(\left(3^n.3^2-3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(=\)\(3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=\)\(3^n.10-2^{n-1}.10\)

\(=\)\(10\left(3^n-2^n\right)⋮10\) ( đpcm ) 

Chúc bạn học tốt ~ 

18 tháng 9 2016

\(3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n.3^2+3^n-\left(2^{n+2}+2^n\right)\\ =3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2^1\right)\)

\(=3^n.10-2^{n-1}.10\\ =10\left(3^n-2^{n-1}\right)⋮10\)

18 tháng 1 2017

Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)

=>\(3^n.3^2+3^n-\left(2^{n+2}+2^n\right)\)

=>\(3^n.\left(3^2+1\right)-2^{n-1}.\left(2^3+2\right)\)

=>\(3^n.10-2^{n-1}.10\)

=>\(10.\left(3^n-2^{n-1}\right)\)

Ta thay a là 10; b là \(3^n-2^{n-1}\)

Ta có \(a⋮10\)=>\(a.b⋮10\)

=>\(10.\left(3^n-2^{n-1}\right)\)\(⋮\)10

19 tháng 9 2015

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right):10\)

3 tháng 2 2017

Đặt A=\(3^{n+2}-2^{n+2}+3^n-2^n\)

=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

=\(3^n.10-2^n.5\)

Có 10 chia hết cho 10 =>\(3^n.10\)chia hết cho 10 (1)

\(2^n\)luôn chia hết cho 2 =>\(2^n.5\)chia hết cho 10 (2)

Từ (1) và (2) =>\(\left(3^n.10-2^n.5\right)\)chia hết cho 10

=>A chia hết cho 10

=>\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10 (đpcm)

22 tháng 10 2017

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\times10-2^n\times5\)

\(=3^n\times10-2^{n-1}\times2\times5\)

\(=3^n\times10-2^{n-1}\times10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Đến đây bn kết nốt

Chúc bn học tốtbanhbanhbanhbanhbanh

20 tháng 10 2015

Bạn vào câu hỏi tương tự nha Ngọc Mai

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

1 tháng 5 2020

với n = 1 có : ( 1 + 1 ) chia hết cho 2

giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k

cần chứng minh đúng với n = k + 1

tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1

Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )

= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1

vậy ta có đpcm