Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này quen quen nhể:))
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\)\(3^n.3^2-2^{n-1}.2^3+3^n-2^{n-1}.2\)
\(=\)\(\left(3^n.3^2-3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=\)\(3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=\)\(3^n.10-2^{n-1}.10\)
\(=\)\(10\left(3^n-2^n\right)⋮10\) ( đpcm )
Chúc bạn học tốt ~
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right):10\)
Đặt A=\(3^{n+2}-2^{n+2}+3^n-2^n\)
=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
Có 10 chia hết cho 10 =>\(3^n.10\)chia hết cho 10 (1)
Có \(2^n\)luôn chia hết cho 2 =>\(2^n.5\)chia hết cho 10 (2)
Từ (1) và (2) =>\(\left(3^n.10-2^n.5\right)\)chia hết cho 10
=>A chia hết cho 10
=>\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10 (đpcm)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\times10-2^n\times5\)
\(=3^n\times10-2^{n-1}\times2\times5\)
\(=3^n\times10-2^{n-1}\times10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Đến đây bn kết nốt
Chúc bn học tốt
a hơi dài để làm phần b trước :
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot3^2-2^n\cdot2^2+3^n-2^n\)
\(=\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^3.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^3.3\right)^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^4}{2^{18}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5.\left(2^6-1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)
\(A=\frac{2}{3.\left(64-1\right)}-\frac{5.\left(-6\right)}{9}\)
\(A=\frac{2}{3.63}+\frac{30}{9}\)
Tự lm tiếp Ball nhé~
Có: 3^n+2-2^n+2-3^n-2^n
=3^n.9-2^n.4+3^n-2^n
=3^n.10-2^n.5
Mà: +,10 chia hết cho 10
=> 3^n.10 chia hết cho 10. (1)
+, n là số nguyên dương => n lớn hơn hoặc =1
=> 2^n.5=2.2..2.5 (n chữ số 2)
=(2.5).2.2...2 (n-1 chữ số 2)
=10.2.2.2..2
=> Chia hết cho 10 (tại vì có 10 chia hết cho 10) (2)
Từ 1 và 2 => 3^n.10-2^n.5 chia hết cho 10 (Cả số bị trừ và số trừ đều chia hết cho 10-> Hiệu cũng sẽ chia hết cho 10)
=> ĐPCM.
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)
=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)- \(2^n\)
=10 .\(3^n\)-5.\(2^n\)
=10.\(3^n\)-5.2.\(2^{n-1}\)
=10 .(\(3^n\)-\(2^n\) )
=> chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)
\(3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n.3^2+3^n-\left(2^{n+2}+2^n\right)\\ =3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2^1\right)\)
\(=3^n.10-2^{n-1}.10\\ =10\left(3^n-2^{n-1}\right)⋮10\)
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
=>\(3^n.3^2+3^n-\left(2^{n+2}+2^n\right)\)
=>\(3^n.\left(3^2+1\right)-2^{n-1}.\left(2^3+2\right)\)
=>\(3^n.10-2^{n-1}.10\)
=>\(10.\left(3^n-2^{n-1}\right)\)
Ta thay a là 10; b là \(3^n-2^{n-1}\)
Ta có \(a⋮10\)=>\(a.b⋮10\)
=>\(10.\left(3^n-2^{n-1}\right)\)\(⋮\)10