K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Tập xác định : D=R. Phương trình đã cho tương đương với :

18(4x−4)2−74(4x−4)+12−33√4x−4=0 (1)

Đặt t=3√4x−4 thay vào phương trình (1) ta có :

t6−14t3−24t+96=0

hay :

(t−2)2(t4+4t3+12t2+18t+24)=0 (2)

Nếu t≤0 thì t6−14t3−24t+96>0

Nếu t > 0 thì t4+4t3+12t2+18t+24>0

Do đó (2) <=> t=2⇒x=3

2 tháng 9 2019

\(VT=2\left(x^2-2.x.\frac{11}{4}+\frac{121}{16}\right)+\frac{47}{8}>0\)

=> \(VP>0\)=> x>1

pt <=> \(2\left(x^2-6x+9\right)=3\sqrt[3]{4x-4}-\left(x+3\right)\)

<=> \(2\left(x-3\right)^2=\frac{27\left(4x-4\right)-\left(x+3\right)^3}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(2\left(x-3\right)^2=\frac{-\left(x+15\right)\left(x-3\right)^2}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(\left(x-3\right)^2\left(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\right)=0\)

x>1 => $\(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}>0\)

pT <=> \(\left(x-3\right)^2=0\)

<=> x=3

2 tháng 9 2019

E cảm ơn

NV
20 tháng 7 2021

c.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)

\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)

\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))

\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)

\(\Rightarrow x^3+7x^2+4x-24=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)

Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)

Ta có:

\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

18 tháng 5 2016

Tập xác định : D=R. Phương trình đã cho tương đương với :

\(\frac{1}{8}\left(4x-4\right)^2-\frac{7}{4}\left(4x-4\right)+12-3\sqrt[3]{4x-4}=0\)  (1)

Đặt \(t=\sqrt[3]{4x-4}\) thay vào phương trình (1) ta có :

\(t^6-14t^3-24t+96=0\)

hay :

\(\left(t-2\right)^2\left(t^4+4t^3+12t^2+18t+24\right)=0\)  (2)

Nếu \(t\le0\) thì \(t^6-14t^3-24t+96>0\)

Nếu t > 0 thì \(t^4+4t^3+12t^2+18t+24>0\)

Do đó (2) <=> \(t=2\Rightarrow x=3\)

28 tháng 10 2019

@Võ Hồng Phúc