a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)
\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)
Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+xz\)
\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)
\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)
\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)
Ta có đpcm
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được
\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)
Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)
Cách trâu bò :
Ta có :
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)
+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)
\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)
Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )
1/ Đặt
\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow xy+yz+zx=x+y+z\)
\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow x=1;y=1;z=1\)
\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)
\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)
2/ Đặt
\(ab=x,bc=y,ca=z\) cần tính
\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
Xét \(x+y+z=0\)
\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)
Xét \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)