\(x^n=o\left(n\inℕ^∗\right)\)
bài này khó quá . ai giúp mik đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 3x - 1/2 ) + ( 1/2y + 3/5 ) = 0
=> ( 3 x - 1/2 ) = 0
3x = 0+1/2
3x = 1/2
x = 1/2 : 3
x = 1/6
=> ( 1/2 y + 3/5 ) = 0
1/2y = 0 - 3/5
1/2 y = -3/5
y = -3/5 : 1/2
y = -6/5
\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x-3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)
Xét \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Xét \(\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì xét 2 trị biểu thức , một cái có 2 giá trị (0 or 3) , một cái (-1 or 3)
Nên ta lấy cái chung
=> x = 3
Đặt vế trái phương trình là A
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\)
\(3A=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{\left(x+3\right)-x}{x\left(x+3\right)}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(3A=1-\frac{1}{x+3}=\frac{x+2}{x+3}\Rightarrow A=\frac{x+2}{3\left(x+3\right)}\)
\(\Rightarrow\frac{x+2}{3\left(x+3\right)}=\frac{667}{2002}\Rightarrow2002\left(x+2\right)=3.667.\left(x+3\right)\)
\(\Leftrightarrow2002x+4004=2001x+6003\Leftrightarrow x=1999\)
27n . 9n = 927 : 81
(33)n. (32)n = (32)27 : 34
33n . 32n = 354 : 34
35n = 350
5n = 50
Vậy : n = 50 : 5 = 10
Chúc cậu học tốt
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2\)
Đặt x+y=S
xy=p
\(\hept{\begin{cases}S=1\\\left(S^2-2P\right)^2-2P^2=1\end{cases}}\)
=> \(\left(1-2P\right)^2-2P^2=1\Leftrightarrow2P^2-4P\Leftrightarrow\orbr{\begin{cases}P=0\\P=2\end{cases}}\)
Với S=1; P=0 , x, y là nghiệm phuowg trình: X^2-X=0\(\Leftrightarrow\orbr{\begin{cases}X=0\\X=1\end{cases}}\)Hệ có nghiệm (0; 1) hoặc (1; 0)
Với S=1; P=2; x, y là nghiệm phương trình: x^2-x+2=0 vô nghiệm vì đen ta bé hơn 0 hoăc (x-1/2)^2+7/4 >0
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017
\(x^n=0\Leftrightarrow\hept{\begin{cases}x=0\\n\in N\end{cases}}\)
nếu xn=0
n thuộc N*
=>x=0