cho n là số tự nhiên chứng minh n x ( n+ 1 ) x ( n + 2 ) x ( n + 3 )chia hết cho2 ,3 ,4
ai giúp mình với mik cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
a: \(=5^{2003}\left(5^2-5+1\right)\)
\(=5^{2003}\cdot21⋮7\)
mình nghĩ đề không chuẩn lắm, nếu thử n lần lượt bằng 1,2... thì đều khoog chia hết cho 10
Vì một số khi chia cho 4 có thể dư 0;1;2;3 nên theo nguyên lí Đi rích lê thì trong 4 số tự nhiên liên tiếp có ít nhất một số chia hết cho 4, do đó tích trên chia hết cho 4, mà 4 chia hết cho 2 nên tích trên cũng chia hết cho2.
Tương tự với 3 nhé
+) CHC ( chia hết cho ) 2 :
Vì n ; n+1 ; n+2 và n+3 là 4 số liên tiếp
=> có 2 số chẵn
=> CHC 2 ( đpcm )