Cho a+b=7, ab=12. Tính a\(^4\)+b\(^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^4+b^4\\ =\left(a^4+2a^2b^2+b^4\right)-2a^2b^2\\ =\left(a^2+b^2\right)^2-2a^2b^2\\ =\left[\left(a^2+2ab+b^2\right)-2ab\right]^2-2a^2b^2\\ =\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2\\ =\left(a+b\right)^4-4ab\left(a+b\right)^2+4a^2b^2-2a^2b^2\\ =\left(-4\right)^4-4\left(-12\right)\left(-4\right)^2+2a^2b^2\\ =256+768+2\left(-12\right)^2\\ =256+768+288\\ =1312\)
\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)
\(\Rightarrow a-b=-1\)
\(\Rightarrow A=\left(-1\right)^5=?\)
\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)
a+b=7 và ab=12
=>a,b là các nghiệm của phương trình:
x^2-7x+12=0
=>x=3 hoặc x=4
=>(a,b)=(3;4) hoặc (a,b)=(4;3)
TH1: a=3; b=4
=>(a-b)^3=-1
TH2: a=4; b=3
=>(a-b)^3=1
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
\(a+b=7\)
\(\Leftrightarrow\left(a+b\right)^2=49\)
\(\Leftrightarrow a^2+b^2+2ab=49\)
\(\Leftrightarrow a^2+b^2+2.12=49\)
\(\Leftrightarrow a^2+b^2=25\)
\(\Leftrightarrow\left(a^2+b^2\right)^2=625\)
\(\Leftrightarrow a^4+b^4+2a^2b^2=625\)
\(\Leftrightarrow a^4+b^4+2\left(ab\right)^2=625\)
\(\Leftrightarrow a^4+b^4+2.12^2=625\)
\(\Leftrightarrow a^4+b^4+288=625\)
\(\Leftrightarrow a^4+b^4=337\)
Vậy \(a^4+b^4=337\)
Thx