tìm số tự nhiên sao cho các số sau là số chính phương
a) n(n+3)
b) 13n + 3
c) n^2 +n+1589
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)
Xét m = 0 thì \(n^2+2n+12=0\) (1)
Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)
Do \(\Delta< 0\) nên (1) vô nghiệm (*)
Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)
Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)
Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)
Do \(\Delta< 0\) nên (2) vô nghiệm (**)
Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)