K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)

\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2010}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Rightarrow x-2020=0\Leftrightarrow x=2020\)

vậy.......

23 tháng 9 2021

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+3}{2017}+1\right)+\left(\dfrac{x+4}{2016}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2017}-\dfrac{x+2020}{2016}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x=-2020\)(do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\))

23 tháng 9 2021

Cộng 1 vào mỗi số hạng là ra

26 tháng 1 2019

\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)

\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)

Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy...

27 tháng 1 2019

\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+2017}{3}+\dfrac{x+2016}{4}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2016}{4}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{3}-\dfrac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x+2020=0\) ( do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\))

\(\Leftrightarrow x=-2020\)

Vậy phương trình có tập nghiệm S = \(\left\{-2020\right\}\)

13 tháng 8 2023

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)

\(=>x+1=0\)

\(=>x=-1\)

b,

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)

\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)

\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)

\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)

\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)

Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)

\(=>x+2021=0\)

\(=>x=-2021\)

 

c,

\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)

\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)

\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)

\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)

Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)

\(=>x+329=0\)

\(=>x=-329\)

8 tháng 3 2018

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)

<=>\(\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{2017}-1+\dfrac{x+4}{2018}-1\)

<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)

<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)

<=>\(\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

vì 1/2015+1/2016-1/2017-1/2018 khác 0

=>x-2014=0<=>x=2014

vậy.....................

chúc bạn học totts ^^

8 tháng 3 2018

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)

\(\Leftrightarrow\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{x017}-1+\dfrac{x+4}{2018}-1\)

\(\Leftrightarrow\dfrac{x+1-2015}{2015}+\dfrac{x+2-2016}{2016}=\dfrac{x+3-2017}{2017}+\dfrac{x+4-2018}{2018}\)\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)

\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

Vì: \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)

\(\Rightarrow x-2014=0\)

\(\Rightarrow x=2014\)

Vậy........

13 tháng 12 2018

\(\dfrac{x+4}{2015}+\dfrac{x+3}{2016}=\dfrac{x+2}{2017}+\dfrac{x+1}{2018}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)

\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}=\dfrac{x+2019}{2017}+\dfrac{x+2019}{2018}\)

\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}-\dfrac{x+2019}{2017}-\dfrac{x+2019}{2018}=0\)

\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

\(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)

\(\Leftrightarrow x+2019=0\)

\(\Leftrightarrow x=-2019\)

Vậy...

10 tháng 3 2018

Sửa đề: \(\dfrac{x-4}{2019}+\dfrac{x-3}{2018}=\dfrac{x-2}{2017}+\dfrac{x-1}{2016}\)

\(\Leftrightarrow\dfrac{x-4}{2019}+1+\dfrac{x-3}{2018}+1=\dfrac{x-2}{2017}+1+\dfrac{x-1}{2016}+1\)

\(\Leftrightarrow\dfrac{x+2015}{2019}+\dfrac{x+2015}{2018}=\dfrac{x+2015}{2017}+\dfrac{x+2015}{2016}\)

\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x=-2015\)\(\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)\ne0\)

20 tháng 3 2018

đoạn cuối cùng mk chưa hiểu lắm leuleu

1 tháng 3 2017

\(\frac{x-1}{2017}+\frac{x-2}{2018}+\frac{x-3}{2019}=-3\)

\(\Leftrightarrow\frac{x-1}{2017}+1+\frac{x-2}{2018}+1+\frac{x-3}{2019}+1=0\)

\(\Leftrightarrow\frac{x+2016}{2017}+\frac{x+2016}{2018}+\frac{x+2016}{2019}=0\)

\(\left(x+2016\right)\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)=0\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\ne0\) nên

x+2016=0

\(\Leftrightarrow\)x=-2016

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)