K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 9 2018

Lời giải:

Ta có \(2x^2-6xy+9y^2-6x+9=0\)

\(\Leftrightarrow (x^2-6xy+9y^2)+(x^2-6x+9)=0\)

\(\Leftrightarrow (x-3y)^2+(x-3)^2=0\)

\((x-3y)^2; (x-3)^2\geq 0, \forall x,y\in\mathbb{R}\), do đó để \((x-3y)^2+(x-3)^2=0\) thì \(\left\{\begin{matrix} (x-3y)^2=0\\ (x-3)^2=0\end{matrix}\right.\Leftrightarrow x=3; y=1\)

Vậy........

9 tháng 9 2018

2x2 - 6xy + 9y2 - 6x + 9 = 0

<=> ( x2 - 6xy + 9y2 ) + ( x2 - 6x + 9 ) = 0

<=> ( x - 3y )2 + ( x - 3 )2 = 0

<=> x = 3; y = 1

Vậy x = 3 và y = 1

26 tháng 8 2016

A=2x^2+9y^2-6xy-6x-12y+2024 
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995 
 x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3 


\(K\)\(nha!~!\)

NV
12 tháng 9 2021

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+\left(x^2+6x+9\right)+\left(z^2-8z+16\right)=0\)

\(\Leftrightarrow\left(x-3y\right)^2+\left(x+3\right)^2+\left(z-4\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x+3=0\\z-4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\\z=4\end{matrix}\right.\)

16 tháng 12 2020

Ta có \(x^2-6xy+9y^2-3x=0\left(1\right)\)

\(\Leftrightarrow3x=\left(x-3y\right)^2⋮3\Rightarrow3x=\left(x-3y\right)^2⋮9\)

\(\Rightarrow x⋮3\)

Mà \(x\) là số nguyên tố nên \(x=3\)

\(\left(1\right)\Leftrightarrow3x=\left(x-3y\right)^2\)

\(\Leftrightarrow9=\left(9-3y\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\)

Thử lại được \(x=3;y=2\)

17 tháng 12 2020

hôm qua mình thi hsg câu này mà ko bt làm 

14 tháng 5 2021

`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`

`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`

`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`

Vì `(3x+y=1)^2>=0`

`=>2(y+1)^2<=37`

`=>(y+1)^2<=37/2`

Mà `(y+1)^2` là scp

`=>(y+1)^2 in {0,1,4,8,16}`

`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`

`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`

Đến đây dễ rồi thay y vào rồi tìm x thôi!

9 tháng 10 2021

a)\(x^4+3x^3+x^2+3x=x\left(x^3+3x^2+x+3\right)\)

\(=x\left[x^2\left(x+3\right)+\left(x+3\right)\right]=x\left(x+3\right)\left(x^2+1\right)\)

b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-4z^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)

c) \(=2x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(2x-7\right)\)

9 tháng 10 2021

\(a,=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x^2+1\right)\left(x+3\right)\\ b,=\left(x+3y\right)^2-4z^2=\left(x+3y+2z\right)\left(x+3y-2z\right)\\ c,=2x^2-2x-7x+7=\left(x-1\right)\left(2x-7\right)\)

10 tháng 9 2023

\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)

Xem lại đề ý b